
SmartBits
Multiport Port/Stream/Layer Performance Analysis System

SmartLib
User Guide

Programming Library Version 3.07

AUGUST 1999

Supporting these Development Environments

Microsoft Windows Version 3.1

Windows 95

Windows NT

UNIX

Borland C/C++

Microsoft Visual C/C++

GNU C/C++

Microsoft Visual Basic

Borland Delphi

Tcl

P/N 340-0029-002 Rev H

SmartLib User Guideii

Netcom Systems, Inc.
(818) 676-2300 Phone
(818) 676-2700 FAX

Copyright � 1993-1999 Netcom Systems, Inc. All Rights Reserved. Printed August 1999.

Disclaimer
The information contained in this manual is the property of Netcom Systems, Inc. and is furnished for use
by recipient only for the purpose stated in the Software License Agreement accompanying the user
documentation. Except as permitted by such License Agreement, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior
written permission of Netcom Systems, Inc.

Information contained in the user documentation is subject to change without notice and does not
represent a commitment on the part of Netcom Systems, Inc. Netcom Systems, Inc. assumes no
responsibility or liability for any errors or inaccuracies that may appear in the user documentation.

Trademarks
SmartBits is a trademark of Netcom Systems, Inc.

Warranty
Netcom Systems, Inc. warrants to recipient that hardware which it supplies with this user documentation
(“Product”) will be free from significant defects in materials and workmanship for a period of twelve (12)
months from the date of delivery (the “Warranty Period”), under normal use and conditions.

Defective Product under warranty shall be, at Netcom Systems’ discretion, repaired or replaced or a credit
issued to recipient’s account for an amount equal to the price paid for such Product provided that: (a) such
Product is returned to Netcom Systems after first obtaining a return authorization number and shipping
instructions, freight prepaid, to Netcom Systems’ location in the United States; (b) recipient provide a
written explanation of the defect claimed; and (c) the claimed defect actually exists and was not caused by
neglect, accident, misuse, improper installation, improper repair, fire, flood, lightning, power surges,
earthquake or alteration. Netcom Systems will ship repaired Product to recipient, freight prepaid, within ten
(10) working days after receipt of defective Product. Except as otherwise stated, any claim on account of
defective materials or for any other cause whatsoever will conclusively be deemed waived by recipient
unless written notice thereof is given to Netcom Systems within the Warranty Period. Product will be
subject to Netcom Systems’ standard tolerances for variations.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, ALL IMPLIED WARRANTIES, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND
FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY EXCLUDED, AND THE LIABILITY OF
NETCOM, IF ANY, FOR DAMAGES RELATING TO ANY ALLEGEDLY DEFECTIVE PRODUCT SHALL
BE LIMITED TO THE ACTUAL PRICE PAID BY YOU FOR SUCH PRODUCT. IN NO EVENT WILL
NETCOM SYSTEMS BE LIABLE FOR COSTS OF PROCUREMENT OF SUBSTITUTE PRODUCTS OR
SERVICES, LOST PROFITS, OR ANY SPECIAL, DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ARISING IN
ANY WAY OUT OF THE SALE AND/OR LICENSE OF PRODUCTS OR SERVICES TO RECIPIENT
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SmartLib User Guide iii

Contents
Chapter 1: Introducing SmartLib..1

What is SmartLib?..1

About the SmartLib Library...1

About the SmartLib Document Set...2

Compatibility...2

What are SmartCards, SmartModules, and MiniModules?..3

Function Prefixes: ET, HT, HG, NS..3

Conventions Used in This Guide..3

Technical Support ..4

Troubleshooting..4

Chapter 2: What's New...5
SmartLib Questionnaire ...7

Document Revision History..7

Chapter 3: General Programming Information ...9
System Requirements..9

Guidelines for All Environments ...9

Establishing a Link from the PC to SmartBits ..10

Avoiding Link Timeouts ..11

How to Identify Hubs, Slots, and Ports...13

Port Mapping Modes ..13

Hub Numbering with Multiple Chassis..17

Library Functions for Port Mapping Mode ..19

Understanding Multi-user Access ..20

Using NSCreateFrame to Define Frame Templates ..21

Chapter 4: Compatibility of Original Functions with Cards and Card Families25

Chapter 5: Understanding Streams ..29
Two Modes Used to Generate Test Traffic ..29

Support for Variable Field Definitions (VFDs) ..31

Chapter 6: Getting SmartMetrics Results...33
How to Set up Histograms ...34

Chapter 7: Working with Tcl ..37
Installing Tcl and SmartLib...37

Setting up SmartLib with Tcl...38

Test Driving the Tcl Shell with SmartBits ...40

Running a Sample Script..41

Using the New 3.07 Tcl Interface ...43

Comparative Usage Examples...43

Default Values with the Tcl Interfaces..45

Contents

SmartLib User Guideiv

Default Value Examples...45

Converting Existing Scripts for the New Tcl ...47

Additional Information...48

Chapter 8: Programming in MS Windows™...51
Installation ..51

Directory Contents..52

General Programming Notes for Windows ..53

Developing with C/C++...53

Developing with Tcl ..55

Developing with Delphi ...56

Developing with Visual Basic ...56

Chapter 9: Programming in UNIX..59
Installation ..59

UNIX Directory Structure and Content ...60

Developing with C/C++...61

Developing with Tcl ..61

Chapter 10: Code Examples ..63
Where to Find the Code Examples ..63

Tcl Demo Scripts..64

Examples in the et1000_tcl Directory...64

Examples in the smartlib_tcl Directory ...73

Cross-reference: Functions within Tcl Code Examples ...74

C Demo Modules ...79

Visual Basic (VB) Demo...82

Chapter 11: Using LibX for Simplified Library Control ...85
System Requirements..85

Cards Supported ..85

LibX Components...85

Example 1 – Loading LibX with loadx.tcl..86

Example 2 – set_default and set_link ..89

Example 3 – Transmit and Count...91

Example 4 – set_capture / show_capture ..95

Example 5 – set_mii / show_mii...97

Example 6 – set_l3 / show_l3...101

Example 7 – set_streamxx / show_stream ..103

Example 8 – Other Stream Commands ...106

Summary of LibX Procedures ..107

Chapter 12: Function and Structure Reference ...109
Listed Alphabetically. See Index for a complete listing.

Appendix A: Original Functions for the ET-1000 Only ..197
Listed Alphabetically. See the index under "Original Functions for the ET-1000 Only."

Contents

SmartLib User Guide v

Appendix B: Error Codes..223

Appendix C: Library Revision History ...227

Appendix D: Obsolete Functions and Structures...247
Listed Alphabetically. See the index under "Obsolete Functions and Structures."

Index ...259

Contents

SmartLib User Guidevi

SmartLib User Guide 1

Chapter 1:
Introducing SmartLib

What is SmartLib?
SmartLib is a programming library that helps developers create custom test applications for
Netcom Systems’ SmartBits systems and the ET-1000.

You can use SmartLib to:

• Create automated applications that test specific functionality.

• Extend SmartBits testing capabilities when testing nonstandard equipment.

• Run tests in either a UNIX or Windows environment.

• Create a simplified user interface for use on a production line.

About the SmartLib Library
The SmartLib Programming Library provides test functionality for:

• Ethernet 10MB, 100MB, and Gigabit systems.

• Token Ring 4MB and 16MB systems.

• VG/AnyLan in Ethernet mode.

• ATM technologies including DS1, E1, 25MB, E3, DS3, OC-3c, and OC-12c with signaling
control as well as traffic generation.

• Frame relay.

• Packet Over Sonet (POS).

Three Ways to Develop Test Applications
SmartLib offers three approaches to test application development:

• The Original Functions. These interface with the hardware and firmware of older
SmartCards, as well as with many of the newer SmartCards, SmartModules, and
MiniModules.

• The Message Functions. These provide a more standardized syntax to interface with the
hardware and firmware of newer SmartCards, SmartModules, and MiniModules, including
ATM, Frame Relay, Gigabit, Layer3, Ethernet/Fast Ethernet, and Multi-Layer.

• The SmartAPI test routines. These are predefined test modules that interface with both the
Original Functions and Message Functions.

Four Library Interfaces
Your Software Developer’s Kit includes four interfaces to the library, designed for use with
C/C++, Tcl, Visual Basic, and Delphi.

Chapter 1
Introducing SmartLib

SmartLib User Guide2

About the SmartLib Document Set
SmartLib 3.07 documentation includes both printed manuals and manuals in electronic (PDF)
format on the distribution CD.

For on-line manuals, look in:

<Your CD>: | Documents | Manuals | SmartLib

To view and print PDF files, use one of the Acrobat readers (for UNIX or Windows) located in:

<Your CD>: | Tools |

SmartLib User Guide
This SmartLib User Guide provides basic information about the SmartLib Programming Library,
including library installation, programming notes, original library functions, and controller
functions.

Related Documentation
The core SmartLib document set also includes:

Title Description

SmartLib Message Functions Information about SmartCard- and SmartModule-specific
Message Functions, including step-by-step instructions on
using the Message Functions to control SmartCards,
SmartModules, and MiniModules.

SmartAPIs Information about individual SmartAPI tests suites. Each of
these corresponds to a Netcom Systems Microsoft
Windows™ application, such as SmartSignaling and
SmartApplications. You can add these manuals to your
SmartLib binder as they become available.

Compatibility
As SmartLib evolves, Netcom Systems makes every effort to maintain compatibility, so that
applications developed for older modules will work either without modification or with minimal
modification. You may, however, need to recompile programs to make use of new features and
product releases.

For compatibility of the Original Functions with cards in the different card families, see Chapter 3,
Compatibility of Original Functions with Cards and Card Families. Refer to the SmartLib
Message Functions manual for information on the compatibility of cards with the Message
Functions.

NOTE Be sure to check the readme.html file included with each release. See also the
Document Revision History (in this chapter) and the Library Revision History (Appendix
C) for changes that might affect your programs.

Chapter 1
Introducing SmartLib

SmartLib User Guide 3

What are SmartCards, SmartModules, and MiniModules?
SmartCards are custom-designed printed circuit boards (PCBs) that fit within a SmartBits chassis
to generate, capture, and track network packet data. They fit into the SMB-1000, SMB-2000 and
SMB-200 chassis.

SmartModules are made up of two PCBs within a specially designed tray that fits into the SMB-
6000 chassis. SmartModules provide a higher port density than SmartCards.

MiniModules consist of only one PCB, but have a higher port density than the SmartCard. They
are attached to a tray specially designed for the SMB-600.

The term card can refer to any SmartCard or any printed circuit board within a SmartModule, or
MiniModule.

Function Prefixes: ET, HT, HG, NS
All SmartLib function names have one of four prefixes: ET, HT, HG, or NS. These indicate the
compatible SmartBits systems or cards, as follows:

Function Prefix Description

ET Functions that interact with the SmartBits controller. They are not designed to
work with SmartCards, SmartModules, and MiniModules.

HT Functions that communicate with a single SmartCard or module.

HG Functions that communicate with a group of SmartCards or modules.

NS Functions that communicate with a SmartBits controller or that perform a
general action for SmartCards or modules. For example, the NSCreateFrame
command can be used to create a frame template for a number of different
cards.

Conventions Used in This Guide
This guide uses the following typographical conventions:

• Syntax entries are written with C/C++ programming conventions, unless otherwise noted.
SmartLib provides interfaces for programming languages other than C++.

Coding examples are shown in a Courier font against a shaded background.

• Function and structure names are shown in a Courier font.

• Directory and file names are shown in an Arial font.

• Notes, cautions, and very important user information are put within horizontal lines, as in the
following example:

NOTE Notes include related information, tips, and precautions about the topic
preceding them.

• The terms packet and frame are used interchangeably.

• The terms card and module are sometimes used to refer generally to SmartCards,
SmartModules, and MiniModules for SmartBits systems.

Chapter 1
Introducing SmartLib

SmartLib User Guide4

Technical Support
Technical support is available Monday through Friday between 07:00 and 18:00 Pacific Standard
Time.

Support for Released Products
To obtain technical support for any Netcom Systems product, please contact our Technical Support
Department using any of the following methods:

Phone: +1 800.886.8842 (available in the U.S. and Canada)

+1 818.676.2589

Fax: +1 818.880.9154

E-mail: support@netcomsystems.com

In addition, the latest versions of application Help files, application notes, and software and
firmware updates are available on our website at:

http://www.netcomsystems.com

NOTE Special pre-release product support is also available via email to
erp@netcomsystems.com for the Early Release Program and email to
beta@netcomsystems.com for beta test programs.

Netcom Systems Headquarters
Netcom Systems, Inc.
26750 Agoura Road
Calabasas, CA 91302
USA

Troubleshooting
If you have difficulty working with the SmartLib Programming Library, consider these pointers:

• Make sure your manual is up-to-date. Check the part number in lower right corner of the
cover. The most current documentation is available at the Netcom Systems website at:

http://www.netcomsystems.com

• Create your programs one module at a time and test often. The Tcl programming language
(provided with SmartLib) is particularly useful in this way, because it enables you to test a
command without compiling. Instead, you can send function calls directly from the command
line.

See Technical Support above to contact Netcom Systems Technical Support.

SmartLib User Guide 5

Chapter 2:
What's New

We are very pleased to bring you SmartLib 3.07 programming library. We think you will find this
version solid, compatible, and improved in many ways. It is a direct response to customer surveys
and conversations with SmartLib users from shops of all types and sizes. We hope you will see the
improvements that you've been looking for as we strive to be your partner in network testing and
verification.

NOTE Because SmartLib 3.06 was released only as beta, this section reflects
changes since the SmartLib 3.05 release.

Here are some of the improvements you will find in SmartLib 3.07.

Code Improvements

• Default values for the Message Functions (less coding for the developer).

• A much simpler yet familiar Tcl interface (again, less coding).

• Multi-user support for the SMB-6000/600 and the SMB-2000.

• Support for recently released and the soon-to-be-released cards, including LAN-6100, POS-
6500, LAN-6201, and ML-5710.

• Enhanced ATM stream indexes (much simpler to work with).

• Improvements to the NSCreateFrame suite of commands (simplifies traffic creation across
card families).

• More extensive quality testing across more platforms than ever before.

Improved Documentation and Code Support

• Basic step-by-step instructions for most card families.

• New cross-reference tables matching each card with commands they support.

• Over thirty additional code samples installed with SmartLib, including extensive ATM
samples and a directory for the new Tcl interface samples.

• New cross-references showing where to find commands in the code samples.

• An in-depth "How-to" guide for using SmartLib with Tcl.

• An extensive document revision history, including page numbers.

• Usage guides including Tcl syntax for all Message Functions.

• Thorough indexes.

SmartLib Questionnaire
We hope you agree that 3.07 succeeds in its goal: to make development with SmartLib faster,
easier, and more powerful while still supporting existing scripts and programs. We look forward to

Chapter 2
What’s New

SmartLib User Guide6

supporting you in your efforts to provide faster, more stable networks. We appreciate your
business and your input.

Feel free to let our Technical Support specialists and Sales representatives know your ideas and
suggestions about our SmartLib 3.07 release. Or, use the questionnaire provided on the next page
to send in your comments.

Notes
• The 3.07 release does not include SmartAPI for SmartApplications or SmartAPI for

SmartSignaling.

• This is the last library release to support 16-bit Windows programming.

SmartLib Questionnaire

SmartLib User Guide SmartLib Questionnaire

SmartLib Questionnaire
Do you like the SmartLib 3.07 improvements? Are there ways we can serve you better? Do you
have ideas or suggestions about Netcom Systems SmartLib Programming Library? You can talk
to our Sales force, Technical Support, or take a moment to fill out this questionnaire and send it in.
We are committed to being your partner in network testing.

Date:

Your Name:

How do use SmartLib?

Company Name:

Phone Number:

E-mail Address:

Mailing Address:

Your O/S & hardware:

Degree of experience with
SmartLib:

Number of SmartBits chassis:

Typical SmartCards you work
with:

What has your experience
with SmartLib 3.07 been like?

Do you have any requests or
suggestions for improvement?

SmartLib Questionnaire

SmartLib Questionnaire SmartLib User Guide

More Comments:

Please send your comments to:

Netcom Systems, Inc.
c/o SmartLib Product Manager
26750 Agoura Road
Calabasas, CA 91302

Chapter 2
What’s New

SmartLib User Guide 7

Document Revision History
This revision of the SmartLib User Guide (publication date August 1999) incorporates the
following additions and corrections.

• For Corrections, page numbers are shown for both the previous release (3.05, publication date
February 1999) and the current document (3.07).

• For Additions, page numbers refer to the current document.

Corrections
Page

Corrections 3.05 3.07

Corrected int Encap to int iEncap in NSCreateFrame. 60 198

Corrected description of VFD3 values for the int Range field in the
HTVFDStructure data structure.

64 154

Corrected spelling of iData[n] fields in HTVFDStructure data structure. 65 154

Added byte length for Gigabit and other SmartCards in int iDataCount
description in HTVFDStructure.

65 154

Corrected Syntax and Return Values for ETGetController description. 85 122

Corrected CountStructure name in ETGetCounters description. 85 207

Corrected ETCOM[n] descriptions in ETLink function. 95 125

Corrected Return Value descriptions for HTSeparateHubCommands
function.

167 180

Corrected formatting and references in HTVFD function. 179 196

Corrected FrameSpec to FrameSpec_Type in NSCreateFrame. 181 198

Corrected compatibility statements in descriptions of Per-Connection Burst
Count and Per-Port Burst Count to include ATM-1 as well as ATM-2.

197 227

Added new card models and integer values in HTGetCardModel. 146 164

Corrected piData type to “long” (was “unsigned long”) in
HTGetEnhancedStatus.

148 166

Obsoleted the HTGroupStart, HTGroupStep, and HTGroupStop
commands.

154-55 262

Corrected Syntax description of NSCreateFrameAndPayload. 182 189

Corrected location of Show.tcl file (it is in Tcl/TclFiles directory, not
AllCards).

21 52

Corrected Description in HTGetEnhancedStatus (…”information is placed
into the long…).

148 166

Updated Return values in ETGetController. 85 122

Additions
Description Page

Understanding Multi-user Access 20

Establishing a Link from the PC to SmartBits 10

Port Mapping Modes 13

Using NSCreateFrame to Define Frame Templates 21

Compatibility of Original Functions with Cards and Card Families 25

Moved Understanding Streams to User Guide from Message Functions manual. 29

Working with Tcl 37

Chapter 2:
What’s New

SmartLib User Guide8

Description Page

Cross-reference to Examples and Functions and
Cross-reference of Functions to Code Examples

63 / 73

Visual Basic (VB) Demo 82

Using LibX for Simplified Library Control 85

Moved descriptions of data structures to reside with their related function(s). All

Added the following new functions:

HTSlotOwnership 180

HTSlotRelease 181

HTSlotReserve 181

NSDisableAutoDefaults 190

NSEnableAutoDefaults 190

NSGetMaxHubs 190

NSGetMaxPorts 191

NSGetMaxSlots 191

NSGetNumHubs 191

NSGetNumPorts 191

NSGetNumSlots 192

NSSetPortMappingMode 194

NSSetDefaultsFile 193

NSSocketLink 194

NSUnLink 195

Moved all ET-1000-only Original Functions to Appendix A 197

Added new Error Codes 223

Moved Function listing from the Table of Contents to the Index —

Removed Additional Examples in This Manual. —

Added Chapter 2, What’s New. —

Added the SmartLib Questionnaire —

SmartLib User Guide 9

Chapter 3:
General Programming Information

System Requirements
This version of SmartLib has been tested with firmware Release 10.16, the most current release of
SmartBits/ET-1000 firmware at the time of writing.

You can obtain the most current release of Netcom Systems’ firmware from the Netcom Systems
web site. Go to:

www.netcomsystems.com

—and click on the Support link.

Guidelines for All Environments
Here are general programming notes for working with SmartLib. For information on programming
in specific environments, see the appropriate chapters in this manual—either Programming in MS
Windows™ or Programming in UNIX.

Including Header Files
Source code/interface modules that call SmartLib library routines must include the appropriate
header file, such as ET1000.H for C/C++ or ET1000.B32 for 32-bit Visual Basic.

Linking with Library Files
Applications that call SmartLib functions must link with the appropriate SmartLib library file.
Each programming environment has a facility for configuring a list of library/shared object
subdirectories. The SmartLib library file must reside in one of the directories on the library
subdirectory list. Some programming environments require that this library be added to the project
manually.

Byte Alignment Switch in 16-bit and 32-bit Environments
If you are compiling in 16-bit environments, the compiler switch struct member byte alignment
must be set to 1 byte.

If you are compiling in a 32-bit environment, set the compiler switch struct member byte
alignment to 4 bytes.

Chapter 3
General Programming Information

SmartLib User Guide10

Establishing a Link from the PC to SmartBits
You can use several commands to establish a connection (either serial or IP) from the PC to the
SmartBits chassis and to break the link.

Command Function Notes

ETLink Establishes a serial link to an SMB 1000,
SMB 2000/200, or ET-1000.

ETSocketLink Establishes an IP socket connection to a
SmartBits chassis.

Note Use a serial-port connection to define the
SmartBits IP address.

ETUnLink Breaks the current connection set up by using
ETLink, ETSocketLink, or NSSocketLink.

See Port Mapping
Modes (page 13) for
further information.

NSSocketLink Establishes an IP socket connection to a
SmartBits chassis. Optionally, in multi-user-
compatibile chassis, reserves either all cards or
none of the cards in the chassis.

Note Use a serial-port connection to define the
SmartBits IP address.

NSUnLink Breaks the current connection set up by using
ETLink, ETSocketLink, or NSSocketLink.

See Understanding
Multi-user Access
(page 20) for further
information.

Use NSSocketLink in Multi-user Applications ETSocketLink, by default, reserves all slots in
the chassis to the issuing user. In contrast, with NSSocketLink, you can reserve all slots or none of
the slots. If you reserve none of the slots using NSSocketLink, you can then use HTSlotReserve to
reserve a subset of slots and leave the other slots available to other users. This creates a multi-user
environment for the SmartBits chassis. See Understanding Multi-user Access (page 20) for further
information.

NOTE The SMB 200 chassis does not support multi-user mode.

Chapter 3
General Programming Information

SmartLib User Guide 11

Avoiding Link Timeouts

A serial link between the PC and SmartBits never times out. An Ethernet link, in contrast, times
out after 30 minutes of inactivity. If the PC does not initiate communications for 30 minutes,
SmartBits will close the socket connection. This frees the SmartBits to accept other link attempts,
should the initial link connection be lost.

SmartLib Response to a Broken Link or Link Time-out
Usually a link is closed through an ETUnLink or NSUnLink command. Occasionally a link
becomes broken because of network failure, power loss, or chassis time-out. If a link breaks while
a SmartLib script or application is executing, the next SmartLib command that is issued attempts to
elicit a response from the SMB link for 30 seconds, then reports an error.

You can increase or decrease the SmartLib timeout value with the ETSetTimeout command (see
page 117).

NOTE Earlier SmartLib releases attempted to get a response for five minutes
(default) before assuming a broken link.

Inserting a Keep-alive Loop in Your Application
You can avoid Ethernet link timeouts by inserting a keep-alive loop in your application. The loop
should issue a command to the SmartBits chassis at a regular interval of less than 30 minutes to
prevent the link from timing out.

Code examples are shown below. Note the following:

• With SmartLib 3.03 and earlier, use HTGetHubLEDs instead of ETGetLinkStatus.

• With SmartLib 3.05 and later, do not use HTGetHubLEDs. It will not keep the link alive with
an SMB 6000.

Simple C Keep-Alive Routine
This example creates an endless loop that keeps the link alive by communicating with SmartBits
every 29 minutes.

while (ETGetLinkStatus() >= 0) {
/* 29 minutes * 60 seconds/minute * 1000 millisecond
NSDelay(29*60*1000);
}

Tcl Keep-Alive Routine
The example below creates a keep-alive loop that can be called periodically from within another
loop. This allows code to run, accessing the chassis only when there has been no communication
with the PC for a specified time interval.

To enable you to see results, this example runs continuously and activates
proc keepalive every 20 seconds. In an actual keep-alive program, you should activate proc
keepalive every 1200 to 1400 seconds (29 minutes = 1740 seconds).

Chapter 3
General Programming Information

SmartLib User Guide12

##
timeout.tcl
proc keepalive {} {
#Access the SMB controller so it doesn’t time-out.
ETGetLinkStatus
puts “”
puts “***”
puts “* 20 seconds have passed: Access SMB *”
puts “***”
puts “”
}

Initialize a beginning time.
set starttime [clock seconds]

Loop for 20 seconds.
while {1 == 1} {

Get the current time.
set nowtime [clock seconds]

Test for values - run keepalive if 20 seconds has passed.
if { [expr $nowtime - $starttime] > 20} {
keepalive
Reset the starttime.
set starttime [clock seconds]
} else {
puts “A one second pause inserted to emulate your program running”
after 1000
}
}

Chapter 3
General Programming Information

SmartLib User Guide 13

How to Identify Hubs, Slots, and Ports
To identify a port in a SmartBits chassis, you specify three values:

• Hub # The SmartBits chassis that contains the SmartCard or module

• Slot # The slot where the card or module is inserted

• Port # The port on the card or module

These are referred to collectively as the Hub/Slot/Port triple. For all three values, numbering starts
at 0. For example, the values iHub 0, iSlot 2, and iPort 0 specify the first hub (0), third slot (2),
and first port (0).

Port Mapping Modes
To identify ports, you can use either of two port mapping modes, termed Compatible and Native.
Each mode was designed to support the architecture of specific SmartBits chassis. Either mode
may be used, however, with any SmartBits chassis.

Compatible Port Mapping
The Compatible mode can be used with any SmartBits chassis. It applied originally to the SMB
1000 and SMB 2000 chassis. In these systems, each slot holds one SmartCard with one port. Thus
the hub and slot numbers were enough to identify a port.

In the Compatible mode, the Hub/Slot/Port triple consists of:

• iHub 0, 1, 2, or 3

• iSlot 0 – 19

• iPort 0

Up to four hubs can be stacked, with Hub 0 is at the top of the stack. See Hub Numbering with
Multiple Chassis for iHub values when chassis are interconnected.

Compatible Port Mapping in the SMB 2000/200

The figure below illustrates Compatible port mapping in a SmartBits 2000/200.

H0 / S0 / P0
H0 / S1 / P0

H0 / S19 / P0

SmartBits 2000

.

Chapter 3
General Programming Information

SmartLib User Guide14

Compatible Port Mapping in SMB 6000/600

When used with an SMB 6000/600 chassis, the Compatible mode enables you to use the same
hub/slot/port values as with an SMB 1000 or SMB 2000.

For compatibility, each SMB 6000/600 port is assigned a slot number, even though a SmartModule
has multiple ports. After 20 ports (“slots”), the hub number increases by one (see figure).

In the Compatible mode with the SMB 6000/SMB600, the Hub/Slot/Port triple consists of:

• iHub 0, 1, 2, or 3

• iSlot 0 – 19

• iPort 0

Numbering with Four-port SmartModules

For SmartModules with four ports, Compatible port mapping in a SmartBits 6000 is as shown in
the figure below. In this example:

• Slot numbering runs from top left to bottom right.

• Each SmartModule has four ports (“slots”).

• The first five SmartModules fill the first “hub” of 20 ports (H0).

• The last SmartModule begins the second hub (H1). Slot numbers start at 0 again.

H0 / S0 / P0
H0 / S1 / P0

SmartBits 6000

H0 / S2 / P0
H0 / S3 / P0

H1 / S1 / P0
H1 / S0 / P0

H1 / S3 / P0
H1 / S2 / P0

Hub #0

Hub #1

Chapter 3
General Programming Information

SmartLib User Guide 15

Numbering with Eight-port SmartModules

With eight-port SmartModules in an SMB6000/600, each port still counts as one slot. The hub
number increments when 20 ports (“slots”) have been counted.

Numbering with Empty Slots

In Compatible mode, slot numbers increment only when ports are physically installed. If there are
empty card positions and slots, the slot numbers continue with the next card or module that is
physically installed.

= Hub 0, Slots 0 - 19

= Hub 1, Slots 0 - 15

H0 / S0 / P0

SmartBits 6000

H1 / S0 / P0

H0 / S0 / P0

SmartBits 6000

Slot numbers increment only when
ports are physically installed.

H0 / S7 / P0

H0 / S8 / P0

Chapter 3
General Programming Information

SmartLib User Guide16

Native Port Mapping
The Native port mapping mode can be used with any SmartBits chassis. It was developed
originally for the SMB 6000 chassis. In the Native mode, the Hub/Slot/Port triple consists of the
following:

Value SMB 2000/200 SMB 6000/600

iHub 0, 1, 2, 3 0

iSlot 0 through 19 0 – 1 (SMB 600)

0 – 11 (SMB 6000)

The right and left sides of each SmartModule count as one slot
with multiple ports.

iPort 0 0 – 7 (card-dependent)

Numbering with Empty Slots

With Native port mapping, slot numbers increment whether or not ports are physically installed. In
the example below, slots 4 and 5 are counted even though a SmartModule is not installed.

H0 / S0 / P0

SmartBits 6000

Slots 4 and 5 are counted
even though no module is
installed.

H0 / S3 / P1

H0 / S6 / P0

Chapter 3
General Programming Information

SmartLib User Guide 17

Hub Numbering with Multiple Chassis
SMB 2000

You can interconnect SmartBits 2000 chassis in a stack of up to four hubs by using the 37-pin
stacking connector on the back panel. The top chassis becomes the controlling chassis. You then
use a connection from the controlling chassis to the PC to control all the hubs in the stack. In
effect, the controllers of the other three hubs are disabled. (The SMB 200 chassis may not be
stacked.)

SMB 6000/600

SmartBits 6000/600 chassis may not be stacked, but individual chassis can be connected to the
same PC through separate controller links.

Synchronizing Chassis or Stacks
You can interconnect the controlling chassis in SMB 2000/200 and 6000/600 chassis, to
synchronize all the chassis. One chassis, termed the master controller, is used to synchronize all
the chassis. Each controlling chassis that uses the master controller’s clock is considered a slave
controller.

NOTE Chassis also can be synchronized through GPS connections. Refer to Using
GPS with SmartBits Chassis for further information.

Identifying Values for Stacked Chassis
The iHub values for controller hubs start at 0 and increment by four (that is, 0, 4, 8, 12, and so on).
This is true whether or not the controller hub has other hubs connected to it (using the 37-pin
stacking cable), and whether or not the stack is “full” (contains all four hubs).

SMB 6000

The figure below shows four SMB 6000 chassis connected to the PC by separate controller links.
Hub numbers are 0, 4, and 8.

SMB 6000
Hub 8

PC Links

Expansion Links to
synchronize hubs.

Hubs 0, 4, and 8 link to the PC through individual controller links. They
also link to one another for synchronization using expansion links.

SMB 6000
Hub 0

SMB 6000
Hub 4

PC

Chapter 3
General Programming Information

SmartLib User Guide18

SMB 2000
The figure below shows three stacks of SMB 2000 chassis. The chassis at the top of each stack is
the controller hub for the stack. All three controller chassis are interconnected through expansion
links for synchronization.

Notice that the third controller hub (third stack) is number 8 even though the previous stack
contains only two chassis.

Synchronized Commands for Hub Stacks
In the figure below, only Hub 0 will receive synchronized commands such as HGStart, because the
expansion connections signify that it is the master controller for all three stacks.

NOTE For the master controller, only the OUT expansion connector is used, not
the IN expansion connector.

Controller
Hub 8

Hub 3

Hub 5

Not Present

PC Links

Master Hub

Because of the expansion link
connections in this example, Hub 0
is the only hub that will receive
synchronized commands such as
HGStart.

See: HTSeparateHubCommands.

Synchronization
connections between
controller hubs.

Stacking connections
between hubs

Not Present

Not Present

Not Present

Not Present

Controllers
Hubs 0, 4, and 8 are linked
directly to the PC and control
other SMB hubs in their stacks.

Controller
Hub 0

Hub 2

Hub 1

Controller
Hub 4

PC

Chapter 3
General Programming Information

SmartLib User Guide 19

Library Functions for Port Mapping Mode
The following SmartLib commands are related to port mapping.

• NSSetPortMappingMode
This function sets the port mapping mode (either Compatible or Native) for the SmartBits
chassis.

• NSGetMaxHubs
This function returns the maximum number of hubs per stack. It returns a value of 4 whether
the connection is to a stack of SMB 2000s or an SMB 6000. This function replaces the
constant MAX_SLOTS. It is useful when allocating memory.

• NSGetMaxSlots
This function returns the maximum number of slots per hub. It replaces the constant
MAX_SLOTS. It is useful when allocating memory.

• NSGetMaxPorts
This function returns the maximum number of ports per slot/card. It replaces the constant
MAX_PORTS. It is useful when allocating memory.

• NSGetNumHubs
This function returns the number of hubs possible for the chassis type. Values returned are 4
for an SMB 2000 and 1 for an SMB 6000, SMB 600, or SMB 200.

• NSGetNumSlots
This function returns the number of slots possible for the specified chassis (not the number of
cards available).

• NSGetNumPorts
This function returns the number of ports possible for a specified card. SmartCards have one
port per card. SmartModules have two or more ports per module.

The NSGetNum functions are useful for creating a loop to access all ports. For example:

for (iHub=0; iHub < NSGetNumHubs(); iHub++)

for (iSlot=0; iSlot < NSGetNumSlots(iHub); iSlot++)

for (iPort=0; iPort < NSGetNumPorts(iHub,iSlot); iPort++)

HTSetStructure (iType1….. iHub,iSlot,iPort);

Summary of Returned Values
For the functions described above, SmartBits returns the following values for each SmartBits
chassis. Hard-coding these values into a script, rather than using the functions, reduces the
portability of your script and is highly discouraged.

Chapter 3
General Programming Information

SmartLib User Guide20

Command SMB-2000 SMB-200 SMB-6000 SMB-600

NSGetMaxHubs 4 4 4 4

NSGetMaxSlots 20 20 32 32

NSGetMaxPorts 2 2 16 16

NSGetNumHubs 4 1 1 1

NSGetNumSlots 20 4 12 2

NSGetNumPorts Card-dependent Card-dependent Card-dependent Card-dependent

Understanding Multi-user Access
SmartLib release 3.07 enables multiple users to gain access to a SmartBits 6000/600 or SmartBits
2000 chassis and reserve slots for use in different tests. (Through this discussion, “SmartBits
6000” comments apply to the SMB 600 as well.) Each user can become the owner of a subset of
the cards or modules in the chassis. Reserved slots are used in tests, then may be released when no
longer needed, to make them available to other users.

The multi-user capability is based on three new functions.

• HTSlotReserve
Reserves one or more specified slots to a user.

• HTSlotRelease
Releases slots that have been reserved through the HTSlotReserve function.

• HTSlotOwnership
Shows current slot ownership.

Two additional new, related functions are:

• NSSocketLink
Makes an IP connection to the SmartBits chassis while reserving either all the available slots
or none of the available slots in the chassis.

• NSUnLink
Breaks the connection on the current link and releases all reserved slots.

How Is NSSocketLink Different from ETSocketLink?

Both NSSocketLink and ETSocketLink create an IP connection to the SmartBits chassis.
ETSocketLink by default reserves all available slots in a chassis to one user. NSSocketLink, in
contrast, can reserve either all available slots or none of these slots. If you use NSSocketLink and
reserve none of the slots, you can use HTSlotReserve to reserve a subset of the slots (one or more),
leaving the other slots available to other users.

Multi-user Access with the SMB 2000
SMB 2000 chassis with backplane revision D or later support multi-user access, using the
functions described above.

NOTE If you install an SE-6205, ST-6405, or ST-6410 SmartCard in a multi-user
SMB 2000, the entire chassis automatically reverts to the single-user mode.

Chapter 3
General Programming Information

SmartLib User Guide 21

Mixing Multi-user and Single-user Chassis
You can connect an SMB 6000/600 to an SMB 2000 with multi-user capability and use library
functions in the normal way. If the SMB 2000 does not have multi-user capability, however, a
connected SMB 6000 also becomes single-user (see table below). As examples, the following
chassis combinations are possible:

SmartBits Connected To SmartBits

SMB 600 (Multi-user) ↔ SMB 6000 (Multi-user)

SMB 6000 (Multi-user) ↔ SMB 2000 (Multi-user)

SMB 6000 (Single-user) ↔ SMB 2000 (Single-user)

Multi-user and GPS
SmartBits 6000/600 and 2000/200 systems can use GPS (Global Positioning System)
synchronization for end-to-end performance testing when SmartBits systems are deployed in
remote locations. The multi-user capability is compatible with GPS synchronization, provided that
the following guidelines are observed:

• A user requesting a GPS-synchronized action (start or stop) becomes the sole user of GPS
functions during a period of about 10 seconds.

• If a second user requests a GPS-synchronized action on the same SMB chassis during the 10-
second “lock-out,” SmartBits returns MULTI_USER_CONFLICT (–37).

• When using GPS in a multi-user environment, set your scripts to handle such conflicts. If
MULTI_USER_CONFLICT (–37) is encountered, craete a loop to pause for 10 seconds then
repeat the request for synchronized action.

Using NSCreateFrame to Define Frame Templates
NSCreateFrame simplifies creating test traffic for a number of different SmartCards and
SmartModules. You can use NSCreateFrame to create test frames based on predefined frame
elements, including the encapsulation type, frame size, protocol, and fill pattern. This enables you
to define test frames quickly and without having to specify frame contents byte by byte. A related
command, NSModifyFrame command, enables you to modify specified segments of the frame
template.

NOTE In SmartLib Release 3.07, the NSCreateFrame function may not be used
with frame relay cards.

Function Summary

Function Description

NSCreateFrame Create a frame template that may be used with different cards.

NSCreateFrameAndPayload Performs the same function as NSCreateFramealso defines a
custom payload (fill pattern).

NSSetPayload Use with NSCreateFrame to define a custom payload (fill pattern).

NSModifyFrame Modify specified segments of frames that were defined using
NSCreateFrame.

NSDeleteFrame Delete a frame template.

HTFrame Puts specified frame elements into the card’s frame buffer.

Chapter 3
General Programming Information

SmartLib User Guide22

How to Use NSCreateFrame
Use the following steps to define frame templates using the NSCreateFrame command.

Step 1 Configure the Frame (FrameSpec_Type)

Define a new data structure using FrameSpec_Type. Set values for the following:

iEncap The frame encapsulation type.
iSize The size of the frame template.
iProtocol Protocol header for frame.
iPattern Background fill pattern.

Example

FrameSpec_Type mySpec;
myspec.iEncap = ENCAP_ETHERNET;
myspec.iSize = 1560;
myspec.iProtocol = FRAME_PROTOCOL_IP;
myspec.iPattern = PAT_AAAA;

Step 2 Create the Frame Template (NSCreateFrame)

Use NSCreateFrame to create the frame template, based on the values set in the FrameSpec_Type
data structure. The command returns a FrameID value that identifies the frame template.

Syntax
long NSCreateFrame (FrameSpec_Type* framespec);

Example

FrameID = NSCreateFrame(&mySpec);

Step 3 Modify Frame Elements (Optional) (NSModifyFrame)

The frame template created by the NSCreateFrame command (or NSCreateFrameAndPayload)
contains the default values for the protocol type defined in your FrameSpec_Type data structure.

These values will deliver test frames to the receiving SmartCard when two SmartCards are
connected in a simple back-to-back arrangement. When actually testing through a device, however,
you will want to modify one or more fields in the frame to insert usable values.

For example, if your FrameSpec_Type structure specifies an IP frame, you must insert a source IP
address and destination IP address to test through an attached switch or router. Use the FrameID
that was returned by NSCreateFrame (or NSCreateFrameAndPayload) to identify the frame
template you wish to modify.

Parameters Description
lFrameID Specifies which frame to modify.
iIdentifier Specifies which element of the frame to modify (for example, destination IP

address or source IP address).
pucBytes Pointer to the replacement bytes used to modify the frame element.
iNumBytes Length of the new segment (pucBytes). An error is returned if this value

does not match the number of bytes being replaced.

Chapter 3
General Programming Information

SmartLib User Guide 23

Syntax
long NSModifyFrame (long lFrameID, int iIdentifier, unsigned char* pucBytes, int
iNumBytes);

Example

char SrcIP[4] = {192,168,98,1}
char DstIP[4] = {192,168,98,98}
NSModifyFrame(FrameID, FRAME_DST_IP_ADDR, DstIP, 4);
NSModifyFrame(FrameID, FRAME_SRC_IP_ADDR, SrcIP, 4);

Step 4 Send the Configuration the Card (HTFrame)

Use the HTFrame command to deliver the frame template to the frame buffer on the card. The
FrameID identifies the frame to send.

Syntax
long HTFrame (long lFrameID, int iHub, int iSlot, int iPort, unsigned short
uiStreamIndex);

Parameters
lFrameID Identifies the frame to send.
iHub SmartBits chassis number.
iSlot Slot number.
iPort Port number.
uiStreamIndex ATM stream index. This value is used only when the protocol is ATM. With

all other protocols, set it to 0. See ATM Streams and Connections in the
SmartLib Message Functions manual.

Example

Assuming that the returned FrameID is 1, the hub/slot/port values are first hub (0), second slot (1),
port 1 (0).

HTFrame (1, 0, 1, 0, 0);

Chapter 3
General Programming Information

SmartLib User Guide24

SmartLib User Guide 25

Chapter 4:
Compatibility of Original Functions
with Cards and Card Families

This chapter outlines the compatibility of cards or card families with the Original Functions. Refer
to the SmartLib Message Functions manual for information on compatibility among the Message
Functions and card families.

Original Functions Used with All Cards

One group of Original Functions works with all cards, without exception:

• HTGetEnhancedStatus Get SmartCard status.

• HTClearPort Clear all counters on the card.

• HTRun Set SmartCard to iMode (run, step, stop).

• HGStart Start transmitting from a group of SmartCards.

• HGStop Stop transmitting from a group of SmartCards.

• HGStep Send one frame from a group of SmartCards.

Original Functions for Ethernet Cards in Traditional Mode

All Ethernet cards can use the Original Functions in the Traditional mode (single-stream
definitions). This enables you to swap cards without changing test code.

Message Functions for SX-7410 Upgrade Features

All upgrade features on the SX-7410 are accessed by the Message Functions (refer to the SmartLib
Message Functions manual). The upgrade features include:

• Alternate Transmit Stream

• Frame Capture Capability

• Software Flow Control

• Preamble Length Definition

• VLAN Tags

Exceptions for ATM SmartCards

The following two functions work on all cards except ATM. See the HTClearPort function (in this
manual) and ATM_STREAM iType1 (in the Message Functions manual) for alternative ways of
performing these functions.

• HTResetPort(iMode, h,s,p).

• HGResetPort(iMode).

The following tables summarize the compatibility of cards with the Original Functions. HG
functions that are based on the equivalent HT function are not included. See the same-named HT
function for compatibility.

C
ha

pt
er

4
C

om
pa

tib
ili

ty
of

O
ri

gi
na

lF
un

ct
io

ns
w

ith
C

ar
ds

an
d

C
ar

d
F

am
ili

es

Sm
ar

tL
ib

U
se

r
G

ui
de

26

O
ri

g
in

al
F

u
n

ct
io

n
A

T
M

10
M

b
p

s
72

xx
/

74
xx

L
3-

67
xx

M
L

-
77

xx
M

L
-

57
10

L
A

N
-

61
00

/
31

00
G

X
-

14
05

(B
)

L
A

N
-

62
00

/
32

00

L
A

N
-

62
01

/
32

01
P

O
S

-
65

00
T

o
ke

n
R

in
g

W
A

N

H
T

A
lig

n
N

Y
Y

Y
Y

Y
Y

N
N

N
N

N
N

H
T

B
ur

st
C

ou
nt

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
Y

Y

H
T

B
ur

st
G

ap
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
N

Y
Y

H
T

B
ur

st
G

ap
A

nd
S

ca
le

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
Y

N

H
T

C
le

ar
P

or
t

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

H
T

C
ol

lis
io

n
N

Y
Y

N
N

N
Y

N
N

N
N

N
N

H
T

C
ol

lis
io

nB
ac

ko
ffA

gg
re

ss
iv

en
es

s
N

Y
Y

Y
Y

Y
Y

N
N

N
N

N
N

H
T

C
R

C
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
N

N
N

H
T

D
at

aL
en

gt
h

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
Y

N

H
T

D
up

le
xM

od
e

N
64

10
Y

Y
Y

Y
Y

N
*

N
N

N
N

N

H
T

F
ill

P
at

te
rn

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

H
T

F
in

dM
IIA

dd
re

ss
N

Y
Y

Y
Y

Y
Y

N
N

N
N

N
Y

H
T

F
ra

m
e

N
N

Y
Y

Y
Y

Y
Y

Y
Y

N
N

N

H
T

G
ap

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
Y

N

H
T

G
ap

A
nd

S
ca

le
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
N

Y
N

H
T

G
et

C
ar

dM
od

el
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

H
T

G
et

C
ou

nt
er

s
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

H
T

G
et

E
nh

an
ce

dC
ou

nt
er

s
N

Y
Y

Y
Y

Y
Y

N
*

N
N

N
Y

Y

H
T

G
et

E
nh

an
ce

dS
ta

tu
s

N
64

10
Y

Y
Y

Y
Y

Y
N

N
N

Y
Y

H
T

G
et

LE
D

s
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

H
T

G
et

H
W

V
er

si
on

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
N

Y

H
T

G
et

S
tr

uc
tu

re
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
Y

H
T

H
ub

Id
Y

N
N

Y
Y

Y
N

N
*

N
N

Y
Y

Y

H
T

H
ub

S
lo

tP
or

ts
Y

Y
Y

Y
Y

Y
N

N
*

N
N

Y
Y

Y

H
T

La
ye

r3
S

et
A

dd
re

ss
N

N
N

Y
Y

Y
N

N
N

N
Y

N
N

H
T

La
te

nc
y

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

H
T

M
ul

tiB
ur

st
C

ou
nt

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

H
T

P
or

tP
ro

pe
rt

y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

H
T

P
or

tT
yp

e
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

H
T

R
ea

dM
II

N
N

Y
Y

Y
Y

Y
N

*
N

N
N

N
N

H
T

R
es

et
P

or
t

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

C
ha

pt
er

4
C

om
pa

tib
ili

ty
of

O
ri

gi
na

lF
un

ct
io

ns
w

ith
C

ar
ds

an
d

C
ar

d
F

am
ili

es

Sm
ar

tL
ib

U
se

r
G

ui
de

27

O
ri

g
in

al
F

u
n

ct
io

n
A

T
M

10
M

b
p

s
72

xx
/

74
xx

L
3-

67
xx

M
L

-
77

xx
M

L
-

57
10

L
A

N
-

61
00

/
31

00
G

X
-

14
05

(B
)

L
A

N
-

62
00

/
32

00

L
A

N
-

62
01

/
32

01
P

O
S

-
65

00
T

o
ke

n
R

in
g

W
A

N

H
T

R
un

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

H
T

S
el

ec
tR

ec
ei

ve
N

Y
*

N
N

N
N

N
N

N
N

N
N

N

H
T

S
el

ec
tT

ra
ns

m
it

N
Y

*
N

N
N

N
N

N
N

N
N

N
N

H
T

S
en

dC
om

m
an

d
Y

Y
Y

Y
Y

Y
N

Y
N

N
N

N
N

H
T

S
et

C
om

m
an

d
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y

H
T

S
et

S
pe

ed
N

N
*

Y
Y

Y
N

Y
N

*
N

N
N

Y
N

H
T

S
et

S
tr

uc
tu

re
Y

Y
N

Y
Y

Y
N

Y
Y

Y
Y

Y
Y

H
T

S
et

T
ok

en
R

in
gA

dv
an

ce
dC

on
tr

ol
N

N
N

N
N

N
N

N
N

N
N

Y
N

H
T

S
et

T
ok

en
R

in
gE

rr
or

s
Y

N
N

N
N

N
N

N
N

N
N

Y
N

H
T

S
et

T
ok

en
R

in
gL

LC
N

N
N

N
N

N
N

N
N

N
N

Y
N

H
T

S
et

T
ok

en
R

in
gM

A
C

N
N

N
N

N
N

N
N

N
N

N
Y

N

H
T

S
et

T
ok

en
R

in
gP

ro
pe

rt
y

N
N

N
N

N
N

N
N

N
N

N
Y

N

H
T

S
et

T
ok

en
R

in
gS

rc
R

ou
te

A
dd

r
N

N
N

N
N

N
N

N
N

N
N

Y
N

H
T

S
et

V
G

P
ro

pe
rt

y
N

N
N

N
N

N
N

N
N

N
N

N
N

H
T

S
ym

bo
l

N
N

Y
N

N
N

Y
0

N
N

N
N

N

H
T

T
ra

ns
m

itM
od

e
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
N

Y
Y

H
T

T
rig

ge
r

N
Y

Y
Y

Y
Y

Y
Y

Y
Y

N
Y

Y

H
T

V
F

D
N

Y
Y

Y
Y

Y
Y

Y
Y

Y
N

Y
Y

H
T

W
rit

eM
II

N
N

Y
N

Y
Y

Y
N

N
N

N
N

N

N
S

C
re

at
eF

ra
m

e
Y

Y
Y

Y
Y

Y
N

Y
N

N
N

N
N

N
S

C
re

at
eF

ra
m

eA
nd

P
ay

lo
ad

Y
Y

Y
Y

Y
Y

N
Y

N
N

N
N

N

N
S

D
el

et
eF

ra
m

e
Y

Y
Y

Y
Y

Y
N

Y
N

N
N

N
N

N
S

M
od

ify
F

ra
m

e
Y

Y
Y

Y
Y

Y
N

Y
N

N
N

N
N

N
S

S
et

P
ay

Lo
ad

Y
Y

Y
Y

Y
Y

N
Y

N
N

N
N

N

*E
T

-1
00

0
C

on
tr

ol
le

r

C
ha

pt
er

4
C

om
pa

tib
ili

ty
of

O
ri

gi
na

lF
un

ct
io

ns
w

ith
C

ar
ds

an
d

C
ar

d
F

am
ili

es

Sm
ar

tL
ib

U
se

r
G

ui
de

28

SmartLib User Guide 29

Chapter 5:
Understanding Streams

A stream of network traffic is a series of frames transmitted from a source address to a destination
address. A stream of traffic is created in two steps: First, you define a frame blueprint. Then, using
the blueprint, the SmartCard or module creates and sends multiple frames. This generates the
stream of traffic.

Stream characteristics can vary with different protocols. For example, with both Ethernet and
frame relay, a stream‘s frames may be modified so that each frame in a stream is different. With
ATM, each stream combines two elements: a stream structure containing connection parameters,
and a frame structure containing the payload contents.

Two Modes Used to Generate Test Traffic
Depending on the cards installed, SmartBits systems can generate test traffic using either of two
modes:

• Traditional Mode One frame blueprint may be defined for each card.

• SmartMetrics Mode Multiple frame blueprints may be defined for each card.

Support for the two modes varies for different SmartCards, SmartModules, and MiniModules.
Some cards support both the Traditional and SmartMetrics modes. Others support one or the other.
As examples:

Traditional Mode Only. Some SmartCards support Traditional Mode exclusively. Examples are
the SX-7210, SX-7410, and TR-8405.

SmartMetrics Mode Only. Some SmartCards support SmartMetrics exclusively. An example is
the WN-3410.

Both Modes. Other SmartCards support both SmartMetrics and Traditional Mode. Examples are
the ML-7710 and L3-6710.

Traditional Mode Traffic
In the Traditional mode, one frame blueprint is available per card. To simulate more than one
stream per card, you use incrementing or varying patterns within specified fields of the frame
blueprint.

The figure below is an example of an Ethernet frame blueprint in the Traditional mode. In this
example, the VFD1 (Variable Field Definition 1) field—which contains the source MAC
address—increments in each frame. This creates frames that seem to come from different devices.

Destination
MAC Address

Source MAC Address
(Incrementing VFD1) Type Payload (Defined Background Pattern) CRC

Chapter 5
Understanding Streams

SmartLib User Guide30

Characteristics of Traditional Mode

Some characteristics of Traditional mode are:

• Traffic is based on modifications of a single frame blueprint.

• By using the Variable Field Definitions VFD1, VFD2, and VFD3 in addition to the
background (fill) pattern, you can achieve a high degree of complexity and control.

• There is a CRC check on the entire frame.

• Traffic can be used to test both Layer 2 and Layer 3 devices.

• Because there is only one frame blueprint per port, information is tracked on a per-port basis.

SmartMetrics Mode Traffic
In the SmartMetrics mode, a card can support many unique frame blueprints. Because each frame
blueprint is used to generate a different stream of test traffic, the blueprints themselves are termed
streams.

Characteristics of SmartMetrics Mode

Some characteristics of SmartMetrics mode are:

• Unique streams of traffic are generated from multiple frame blueprints.

• Information is tracked on a per-stream basis, as opposed to a per-port basis in the Traditional
mode.

• There is a CRC check on the entire frame.

Additional features that apply to Ethernet and frame relay SmartMetrics are:

• The frame can contain embedded signature fields with information about each frame.

• There is in-depth latency and sequence information.

• IP streams contain an IP checksum.

• Traffic can be used to test Layer2, Layer3, and above.

The diagram below shows an example of SmartMetrics stream configuration for an Ethernet
SmartCard. Note the multiple frame blueprints, different protocols, and varied frame sizes.

Ethernet and Frame Relay cards in SmartMetrics mode support the use of a signature field. This
field contains information about the specific frame. The receiving card uses this information to
analyze network traffic and provide histograms.

Index 0

Index 1 MAC Dest MAC Src UDP Prot Header Payload Signature CRC

Index 2 MAC Dest MAC Src IPX Prot Header Payload Signature CRC

Index 3 MAC Dest MAC Src IP Prot Header Payload Signature CRC

Index 4 MAC Dest MAC Src IP Prot Header Payload Signature CRC

Index 5 MAC Dest MAC Src SMB Payload Signature CRC

Ethernet only: The stream at index 0 is
set to Inactive, reserving it as a

placeholder for Traditional mode.

If enabled, the signature field overwrites 18 bytes of data
at the end of the payload. It contains information such as

the time stamp, stream ID, and frame sequence.

Chapter 5
Understanding Streams

SmartLib User Guide 31

Support for Variable Field Definitions (VFDs)
A VFD (Variable Field Definition) is a field within the frame whose value can be manipulated—
for example, incremented, decremented, or used in chunks. VFDs are written over existing
information in the frame, such as the background fill pattern.

VFDs are available on Ethernet cards in the Traditional mode and on frame relay cards.

Ethernet The SmartMetrics mode does not support the use of VFDs, except that in the
SmartBits customizable stream VFD3 can be used to enter the custom protocol header and
payload.

Frame Relay The frame relay cards support VFD1 and VFD2 in SmartMetrics streams. They
support VFD3 in limited fashion, where range is the total number of bytes usable from the VFD3
buffer.

Chapter 5
Understanding Streams

SmartLib User Guide32

SmartLib User Guide 33

Chapter 6:
Getting SmartMetrics Results

Histograms offer a powerful way to look at test results. Available in the SmartMetrics mode, they
distill and analyze information about networks based on incoming test traffic. Whereas counters
supply the cumulative numbers of events, histograms provide relational information and answer
such questions as:

• How many frames were out of order and for which stream?

• At what points during the test did events take place?

• Which streams had latency issues and how often did they occur?

You can enable one histogram for each card each time a specific test is run. The selected histogram
then analyzes the results of the current test traffic.

Histograms are available on the following SmartCards, SmartModules, and MiniModules: ML-
7710, L3-6705, and L3-6710.

Five Histograms Types

For each test and card, you can enable one of the following five histogram types.

V2_LATENCY (Latency over Time)

This histogram provides the average, maximum, and minimum latency values for network traffic at
specified intervals during the test. The values are the composite result of all streams averaged
together. This histogram answers a question like: “What was the over-all average latency in the
first second?”

You configure this histogram to analyze data at specified intervals. For example, you can specify
latency measurements during the first nanosecond, second, third, and so forth.

V2_LATENCY_PER_STREAM (Combination Histogram)

This histogram gives an overall picture of latency per stream. It provides the minimum, maximum,
and average latency values over the course of the test (Latency Per Stream). It tracks the
occurrence of specific latency values on a per-stream basis (Latency Distribution). And it reports
whether or not frames were received in sequence on a per-stream basis (Sequence Tracking).

LATENCY_DISTRIBUTION (Latency Distribution)

This histogram tracks the occurrence of specific latency values on a per-stream basis. It can show
typical latency values and/or the distribution of multiple latency values.

You set the ranges of latency values using Latency_Results_Settings. A range of latency values
can consist of consecutive values (such as in .4, .5, .6 microseconds) or varying values (such as .2,
.5, 1.9…2.3 microseconds).

SEQUENCE (Sequence Tracking)

This histogram reports whether or not frames were received in sequence on a per-stream basis, and
it identifies duplicate and dropped frames. Its algorithm is designed to match the operation of an
actual TCP stack, and is as follows:

• As long as frames are received in sequence, the In Sequence counter is incremented.

Chapter 6
Getting SmartMetrics Results

SmartLib User Guide34

• If a frame is received that is greater than the one expected, the number of missing frames (hole
size) is noted, and a variable for the first of the missing frames is set.

• Subsequent in-order frames falling after the sequence hole increment the In Sequence variable.

• If the frame from the start of the hole is received, the hole-size variable is decremented.

• If a frame from the middle of the hole is received, the earlier frames still not received from the
sequence hole are counted as Lost. The hole-size variable is decremented, and the start of the
hole begins after the received frame. The expected frame continues to be one more than the
last frame received in sequence.

• If another out-of-sequence frame is received before the previous sequence hole is filled, the
Lost variable is incremented by the size of the previous sequence hole. The new hole is then
tracked.

• If while the new sequence hole is being tracked, a previous out-of-sequence frame arrives, the
Duplicate variable is incremented.

• The In Sequence value continues to increment for every frame received in sequence after the
current sequence hole. For example:

1,2,3 Three frames in sequence.
1,2,3,9,10,11 Sequence hole five frames. 10,11, in sequence.
1,2,3,9,10,11,4 Sequence hole is now four frames.
1,2,3,9,10,11,4,15 First hole closed, Lost incremented by four. New hole three

frames long.
1,2,3,9,10,11,4,15,5 Duplicate incremented by one. (5 is counted as a duplicate since

the previous hole is no longer tracked).

RAW_TAGS (Bulk Data)

This histogram provides a list of statistics on a per-frame basis. It differs from other histogram
results in that the data is not analyzed. Rather, Raw Tags gives you access to test data, so that you
can analyze the information any way you wish. Because it generates records on a per-frame basis,
Raw Tags creates a large number of records quickly.

How to Set up Histograms
Use the following steps to set up SmartMetrics histograms and retrieve results.

Step 1 Enable the Signature Field (Transmit Card)

Histograms depend on information in the Signature field. Signature fields are now supported by
the L3 and frame relay cards, and they must be enabled when a stream is defined.

When creating frames with any of the following, enable the Signature field by setting

HTSetStructure
L3_DEFINE_n_STREAM
L3_DEFINE_MULTI_n_STREAM
L3_MOD_n_STREAM
FR_DEFINE_n_STREAM
FR_MOD_n_STREAM
ucTagField = 1

Chapter 6
Getting SmartMetrics Results

SmartLib User Guide 35

Step 2 Activate the Histogram (Receive Card)

Activate the desired histogram on the card using: HTSetCommand with L3_HIST_n or
HTSetStructure with FR_HIST_n. The histogram is now in receive mode until you query it for
information or records.

Message Function iType1 Related Structure Description

HTSetCommand L3_HIST_<type> See below Activate the desired histogram.

HTSetStructure FR_HIST_<type> See below Activate the desired histogram.

Histogram types include the following for L3.

Histogram iType1 (Related Structure)

Latency over Time L3_HIST_V2_LATENCY (Layer3HistLatency)

Latency per Stream L3_HIST_V2_LATENCY_PER_STREAM (Layer3V2HistDistribution)

Latency Distribution L3_HIST_LATENCY_DISTRIBUTION (Layer3HistDistribution)

Sequence Tracking L3_HIST_SEQUENCE ()

Raw Tags L3_HIST_RAW_TAGS ()

Histogram types include the following for frame relay (FR).

Histogram iType1 (Related Structure)

Latency over Time FR_HIST_V2_LATENCY ()

Latency per Stream FR_HIST_V2_LATENCY_PER_STREAM ()

Latency Distribution FR_HIST_LATENCY_DISTRIBUTION ()

Sequence Tracking FR_HIST_SEQUENCE ()

Step 3 Clear Previous Records (Receive Card — Optional)

You can clear all previous records by using the HTSetCommand with L3_HIST_START. (There
is no equivalent FR_HIST_START command.)

Message Function iType1 Related Structure Description

HTSetCommand L3_HIST_START None Clear previous records. (There is no
equivalent FR function.)

Step 4 Transmit Test Traffic (Transmit Card)

Start transmitting test traffic using a function such as HTRun or HGRun. You can send traffic
however you wish (Step, Burst, or Constant stream). The port will continue to collect histogram
data until histogram records or information is retrieved.

NOTE After you start transmitting, remember to allow enough time before
attempting to retrieve histogram results.

Step 5 Query Card for Test Information (Receive Card — Optional)

You can find out how many records are on the card by using HTGetStructure with
L3_HIST_ACTIVE_TEST_INFO or L3_HIST_ACTIVE_TEST_INFO. This information is
useful, for example, when you do not want to retrieve all records.

Message
Function iType1 Related Structure Description

L3_HIST_ACTIVE_TEST_INFO L3HistActiveTestHTGetStructure

FR_HIST_ACTIVE_TEST_INFO None

Get the number of histogram
records and the active
histogram.

Chapter 6
Getting SmartMetrics Results

SmartLib User Guide36

Step 6 Retrieve Histogram Results (Receive Card)

Once test traffic has been sent, retrieve histogram results using HTGetStructure with
L3_HIST_n_INFO or FR_HIST_n_INFO.

Message
Function iType1 Related Structure Description

L3_HIST_<type>_INFO L3<type>InfoHTGetStructure

FR_HIST_<type>_INFO None

Get histogram results for active
histogram <type>.

The number of histogram records retrieved is determined by:

• The starting record specified by the index (iType2).

• The number of structures defined in pData.

The histogram records remain on the card until you clear them, select another histogram, or power
off.

Once a histogram is enabled, it is in receive mode. It will continue to analyze all incoming frames
containing signatures until it is queried for information or records.

You can stop the histogram receive process in two ways:

• Get histogram records using HTGetStructure with either L3_HIST_n_INFO or
L3_AGGR_n_INFO.

• Get information about the histogram using L3_ACTIVE_TEST_INFO.

SmartLib User Guide 37

Chapter 7:
Working with Tcl

This chapter covers some basic Tcl concepts and offers notes specific to using Tcl with Netcom
Systems’ SmartLib programming library. (SmartLib supports a number of programming languages;
this chapter focuses on working with Tcl.) For a complete, in-depth discussion of Tcl, consult one
of the manuals specific to the language. A good source of information is the Scriptics website:
www.scriptics.com.

Tcl is a scripting language. This means that you create a text-based script or application that is run
from a Tcl shell. This is different from compiled languages like C or C++ that can create stand-
alone, executable programs.

Tk is a graphic interface toolkit for Tcl. You can use it to create GUI interfaces that work with your
SmartLib scripts.

One advantage of using Tcl is that you can send commands one at a time from the command line
without compiling. For example, you can enter:

ETLink $ETCOM1

—and press <Enter> to link a computer to the SmartBits chassis; no procedure definition, no
compilation. To create a script you use a basic text editor or programming editor, enter Tcl
commands and commands from the SmartLib programming library, save it as text only, and run the
script.

NOTE Tcl scripts must be saved as TEXT ONLY. If any other formatting is applied, it
will corrupt your scripts.

Below you will find information and step-by-step instructions on:

• Setting up your environment.

• Running basic scripts.

• Using SmartLib’s new improved Tcl interface.

• (Optional) Converting old scripts to use the new Tcl interface.

• General programming tips for using Tcl with SmartLib programming library.

Installing Tcl and SmartLib
Installation of SmartLib and Tcl is a simple, automated process. The SmartLib CD includes an
installer for the Tcl scripting language and for the SmartLib library, including Tcl interface files to
work with your version of Tcl.

To install both the current version of SmartLib and the Tcl scripting language, run the setup utility
from the software CD

• For UNIX — <your CD>/SmartLib/setup.sh

• For Windows — <your CD>\SmartLib\setup.exe

Chapter 7
Working with Tcl

SmartLib User Guide38

The Setup installer will walk you step-by-step through the installation of both SmartLib and Tcl. If
you already have Tcl on your computer, you can choose to only install the SmartLib programming
library.

NOTE Remember the version of Tcl installed on your computer, so that you use the
correct SmartLib files later.

For Windows users, it is suggested that you allow the installer to put the Tcl DLL in the
Windows\System directory. This will ensure that the proper files are available when you run Tcl.

Setting up SmartLib with Tcl
You can set up your files and working directories in a number of ways, depending on your needs.
This section explains which files you need and suggests one possible configuration.

Files You Will Need
To create Tcl scripts with SmartLib commands, you need to be able to run the Tcl shell, as well as
load the proper files to make the SmartLib commands available. The tables below list the files you
need. All are supplied on the installation CD.

SmartLib Files File Use

et1000.tcl The old SmartLib Tcl interface file. It contains the SmartLib commands
that you use from your Tcl shell.

smartlib.tcl The improved new SmartLib Tcl interface file. It is easier to use and
contains the same SmartLib commands to use from your Tcl shell.

libetsmb.so (UNIX)

ETSMBW32.DLL (Win32)

The main SmartLib file that must be loaded regardless of which
programming language you use.

tclet100.so (UNIX)

TCLET100.DLL (Win32)

The file that maps the Tcl interface file to the commands in the main
SmartLib file.

misc.tcl A Netcom System utility file used to display error/result messages when
working with the Tcl shell.

Tcl Version

Tcl Files 8.0 7.6 File Use

tclsh80 (UNIX) •
tclsh76 (UNIX) •
tclsh80.exe (Win) •
tclsh76.exe (Win) •

Runs the Tcl shell. This shell gives you a simple text-
based window that you can type commands in.

tcl80.so (UNIX) •
tcl76.so (UNIX) •
TCL80.DLL (Win) •
TCL76.DLL (Win) •

The main file used by the Tcl scripting language.

libtclStruct.so (UNIX) • •

TCLSTRUC.DLL (Win) • •

A Tcl utility file used for creating structures. This utility
must be used when working with Tcl and SmartLib.

Chapter 7
Working with Tcl

SmartLib User Guide 39

Setting up Your Files
Some files depend on others to run. Here are four ways to ensure that files are available:

1. Put files in a shared, system directory, e.g. \Windows\System for Windows or /usr/bin for
UNIX.

2. Copy dependent files into the same working directory.

3. Specify the path to the file in some sort of a configuration file, such as an *.ini file or init.tcl.

4. Put the full path into your path environment variable.

For this basic configuration, use a combination of the first two ways.

Step 1 All four *.DLL or *.so files (listed above) should be in the shared directory of your operating
system. The SmartLib and Tcl installations can do that for you automatically. Two examples:

UNIX

[your directory] /lib/libetsmb.so
/tclet100.so
/libtcl80.so
/libtclStruct.so

Windows

\ Windows\System\ETSMBW32.DLL
\TCLET100.DLL
\TCL80.DLL
\TCLSTRUC.DLL

Step 2 All four *.DLL or *.so files (listed above) should be in the shared directory of your operating
system. Put necessary files into a working directory. For example:

UNIX

/YourTclWork/smartlib.tcl
/misc.tcl
/tclsh80
/YourTclScripts.tcl
/et1000.tcl (for older scripts)

Windows

\YourTclWork\smartlib.tcl
\Misc.tcl
\tclsh80.exe
\YourTclScripts.tcl

Chapter 7
Working with Tcl

SmartLib User Guide40

Test Driving the Tcl Shell with SmartBits
If you followed the two previous sections, you have both SmartLib and Tcl installed on your
computer, and the files you need are available from your working directory.

Your Hardware Setup
To make use of SmartLib, the computer must be hooked up to the SmartBits chassis.

NOTE See the System Overview manual in the SmartBits User Guide binder for a
more extensive discussion of chassis setup.

Use both the Serial connection and the Ethernet connection on the back panel of the SmartBits.
Use the Serial connection to configure the chassis’s IP address. Once the IP address is set, you can
use the Ethernet address to communicate to the chassis.

Setting the IP Address on the SmartBits
Step 1 Connect the computer COM Port to the chassis COM Port with the RS-232 straight-through cable

supplied with your chassis. This cable is not a null-modem cable, although it has two male ends.
Connect both the computer and the chassis to the same network.

NOTE Use the Ethernet port on the backplane of the chassis. The ports on the
SmartCards can generate enough traffic to bring a network down.

Step 2 Set the IP address. Get an IP address from your Network Manager. Use a terminal-emulation
software such as Hyper Terminal or Procomm Plus. Use the following commands to set the IP
address:

ipaddr
ipaddr <new ip address>
ipaddr

Step 3 Close the terminal software and turn the chassis off and then on again. On a SmartBits 2000/200,
the Link light on the chassis with blink on, then off again. This means the chassis is ready to be
linked to the PC. On a SmartBits 6000/600, the chassis is ready to link when the Status light is
green.

Use the Tcl Shell with a SmartLib Command
This section walks you through sending very basic SmartLib commands from the Tcl shell. (This
example uses Tcl version 8.0.5.)

Step 1 Run the tclsh80 shell.

Go to your working directory (the one that contains Tclsh80 or Tclsh80.exe). Once you run the Tcl
shell, you will see a text window with the % Tcl prompt.

NOTE For Windows-based PCs, Tcl version 8.0 and later allows you to use DOS
commands such as dir and cd from the Tcl shell.

Chapter 7
Working with Tcl

SmartLib User Guide 41

Step 2 Load the SmartLib Tcl interface file et1000.tcl.

To do this, at the % prompt type:

(For the newer interface) source smartlib.tcl

—or—

(For the earlier interface) source et1000.tcl

When these SmartLib commands are loaded, the message:

SmartLib Programming Library <version number>

—is displayed on the screen.

If this command is successful, the SmartLib commands are available and all needed DLLs or SOs
have been loaded automatically. If this command fails, check the location of your files.

Step 3 Try a basic SmartLib command from the Tcl % prompt: Link the computer and the
SmartBits chassis.

NOTE Tcl is case sensitive.

• If your computer to chassis connection is an Ethernet connection, configure the chassis IP
address (different from the SmartCard IP addresses):

ETSocketLink nnn.nnn.nnn.nnn 16385

—where nnn.nnn.nnn.nnn is the chassis IP address and 16385 is the TCP port.

Press <Enter>. The green Link light on the chassis will light up when the connection is made.

• If, instead, you want to make a COM Port connection, use the appropriate COM Port number
for your computer, and type:

ETLink $ETCOMn (where n is your COM Port)

Press <Enter>. The green Link light on the chassis will light up when the connection is made.

Step 4 Unlink.

Type:
ETUnLink

—and press <Enter>. The Link light will go off.

Step 5 Close the Tcl shell.

Type exit and press <Enter>.

Running a Sample Script
Once you have installed SmartLib and Tcl and established the link between your PC and the
SmartBits chassis, you can run one of the many sample scripts provided on the CD.

SmartLib installs the code samples on your computer under the Sample/Tcl directory. Open them
with a basic text editor and read the comments before you run the scripts.

The comments in the files will tell you:

• What tasks the script is accomplishing.

Chapter 7
Working with Tcl

SmartLib User Guide42

• What type of cards and which slots are used. (Many scripts demo a back-to-back connection
between the first two cards in a chassis.)

• Which additional Tcl files you need to source before running the script. To source (run) a Tcl
file, type source FileName.tcl.

• Whether you need to link first and source et10000.tcl/smartlib.tcl.

• If the script needs to call another configuration script (this is rarely done).

Step-by-Step: Running a Tcl Sample Script
Below is a step-by-step procedure to run one of the supplied Tcl sample scripts.

Step 1 Copy ipstream.tcl, l3min.tcl, and startup.tcl to your Tcl working directory.

These files can be found in:

./samples/tcl/smartlib_tcl\Layer3 (new interface)
./samples/tcl/et1000_tcl\Layer3 (older interface)

The l3min.tcl sample sends traffic from SmartMetrics Ethernet SmartCards. The ipstream.tcl
sample configures the cards and is called by l3min.tcl.

Step 2 Make sure you have two SmartMetrics SmartCards in the first two slots of the SmartBits chassis
(for example, ML-7710 cards in slot 0 and 1). Use a back-to-back cable to connect the two cards.

Step 3 Use a text editor to read the comments in l3min.tcl and ipstream.tcl. Then close the scripts.

NOTE Save scripts as Text Only if you make any changes.

Step 4 From your Tcl working directory, run the Tclsh80 shell.

Step 5 At the Tcl command prompt (%), load the SmartLib Tcl commands. Type:
source smartlib.tcl

Step 6 Use SmartLib to establish a link between the computer and the SmartBits chassis. Use the
startup.tcl script for this. Type:

source startup.tcl

Then follow the prompts to link. (You can also use the ETLink or ETSocketLink command).

Step 7 Run the script that transmits traffic. Enter:
source l3min.tcl

The file l3min.tcl will source ipstream.tcl to configure the traffic. You will see the traffic statistics
on your monitor.

Step 8 When the script is done, you can run another script of your choice, or unlink using the ETUnlink
command. Enter exit when you want to close the Tcl shell.

Chapter 7
Working with Tcl

SmartLib User Guide 43

Using the New 3.07 Tcl Interface
The new Tcl interface is easier to use than previous library versions, while keeping the same
library commands from previous versions. The Netcom Systems Library Team is dedicated to
providing simpler development tools for faster development, while maintaining an easy transition
between versions.

Backward Compatibility
Although the new Tcl interface supports simpler format and list commands, the old interface is
also available for continued support of existing scripts. See Converting Existing Scripts for the
New Tcl in this chapter if you wish to use old scripts with the simpler Tcl interface.

What Has Changed?
The Tcl focus for SmartLib has been less typing, more results. If you are using our Tcl interface,
you will notice Tcl specific-benefits, as well as the new default values for all Message Function
commands. Improvements include:

• Lists instead of arrays (new interface only).

• No special formatting for character fields, (new interface only).

• Default values for all Message Functions (both interfaces).

• Informative message when the library is sourced (both interfaces).

• Ability to send a single structure as an element of an array (both interfaces).

How Do I Run the New Tcl Interface?
SmartLib 3.07 now comes with two Tcl interface files:

• et1000.tcl Continued support for scripts written with SmartLib 3.06b and before.

• smartlib.tcl For scripts written with SmartLib 3.07 and later.

If you are creating new Tcl SmartLib scripts, source smartlib.tcl to use the improved Tcl interface.

If you are working with existing scripts and you don't want to convert them to work with
smartlib.tcl, et1000.tcl will continue to support the older interface with no modifications needed.

NOTE The two interface files et1000.tcl and smartlib.tcl are not compatible. Remember
to use the correct interface file with your scripts. See Converting Existing Scripts for the
New Tcl in this chapter for more information.

Comparative Usage Examples
This section covers the Tcl improvements in detail. The smartlib.tcl examples are for 3.07 and
later. The et1000.tcl examples support the earlier interface.

Lists Instead of Arrays (New Interface Only)

You can now use the native Tcl lists to send a list of numeric values with a SmartLib function.
This is different from the earlier interface, where each value was sent as an element of an array.

Chapter 7
Working with Tcl

SmartLib User Guide44

smartlib.tcl example (new list of values):
set MyConfig(ucVFD1Data) {20 22 25 26 26 33 27 21}

et1000.tcl example (old array of values):

set MyConfig(ucVFD1Data.0.uc) [format %c 20]

set MyConfig(ucVFD1Data.1.uc) [format %c 22]

set MyConfig(ucVFD1Data.2.uc) [format %c 25]

set MyConfig(ucVFD1Data.3.uc) [format %c 26]

set MyConfig(ucVFD1Data.4.uc) [format %c 26]

set MyConfig(ucVFD1Data.5.uc) [format %c 33]

set MyConfig(ucVFD1Data.6.uc) [format %c 27]

set MyConfig(ucVFD1Data.7.uc) [format %c 21]

NOTE Arrays are still supported in smartlib.tcl. The format of SmartLib Tcl arrays has
been simplified, however.

smartlib.tcl example (new array element format):

set MyConfig(ucVFD1Data.0) 20

et1000.tcl example (old array element format):

set MyConfig(ucVFD1Data.0.uc) [format %c 20]

No Special Formatting for Character Types (New Interface Only)

Characters are used extensively in the SmartLib Tcl interface to pass numeric values to the
SmartCards. These values are now automatically recognized as numeric values (as opposed to
ASCII characters) and require no additional formatting.

smartlib.tcl example (new passing the numeric value 20):

set MyConfig(ucVFD1Data.0) 20

et1000.tcl example (old passing a value using the Tcl formatting commands):

set MyConfig(ucVFD1Data.0.uc) [format %c 20]

Default Values

See Default Values with the Tcl Interfaces on page 45 for a complete discussion.

Informative Message When the Library is Sourced (Both Interfaces)

This is a convenient, although very minor, improvement in the Tcl interface. When the Tcl
interface is sourced (smartlib.tcl loaded in memory) you will now see:

SmartLib Programming Library <version number>

—displayed. Previously, when the Tcl interface (et1000.tcl) was sourced (loaded in memory), the
name of the last structure was displayed PortPairStruct.

Ability to Send One Array Element at a Time, When Arrays Are Used (Both Interfaces)

This improvement allows you to create an array of structures, then only send one member of the
array. For example, you might use an array of structures to define multiple streams in
L3_DEFINE_IP_STREAM.

Chapter 7
Working with Tcl

SmartLib User Guide 45

Default Values with the Tcl Interfaces
Default Values for All Message Functions (Both Interfaces)

Default configuration values are an important new feature for versions of SmartLib 3.07 and later.
These values are supported in both smartlib.tcl and et1000.tcl, as well as in all supported
languages including Tcl, C/C++, VB, and Delphi.

The benefit of these values is that you send the configuration values you are interested in, and
other default values are filled in for you.

NOTE Default values are covered in depth in the SmartLib Message Functions
manual (see Default Configuration Values). They are also covered in this chapter
because the additional automated defaults are available in the Tcl interface.

Automated Default Values
Automated default values are available in smartlib.tcl only. When you source smartlib.tcl,
automated defaults are off by default. Use the NSEnableAutoDefaults command to make
automated defaults available in your script. This command takes no parameters and is used once in
the script, before the use of any default values. A related command, NSDisableAutoDefaults,
turns off the automated defaults. (Both these commands are documented in the SmartLib User
Guide.)

Default Value Examples
The default value interface is quite flexible. Below are the different ways you can use them from
Tcl.

Sending Default Values without Defining a Structure
(New smartlib.tcl Interface Only)

You can use the message function commands, using a dash ("–") to indicate the default structure.
This will send all default values for the function.

Example
NSEnableAutoDefaults

HTSetStructure $GIG_STRUC_TX 0 0 0 - 0 $iTxHub $iTxSlot $iTxPort

Specifying Values without Specifying a Structure
(New smartlib.tcl Interface Only)

You can use the dash (default values) and still specify certain values within the command.

Example

NSEnableAutoDefaults

HTSetStructure $GIG_STRUC_TX 0 0 0 - 0 $iTxHub $iTxSlot $iTxPort \

-ulGap 9600 \

-ucVFD1Pattern {20 22 25 26 26 33 27 21} \

-ucVFD2Pattern {30 32 35 36 36 43 37 31}

This dash means: "Use defaults. Don't store a structure."

The dash is still used to specify default
values without defining a structure.
Three configuration values are
specified. These values now override
the defaults for Gap, VFD1, and VFD2.

Chapter 7
Working with Tcl

SmartLib User Guide46

Specifying a Structure Name So Configuration Values Can Be Accessed Later
(New smartlib.tcl Interface Only)

You can specify a structure name so that your configuration values can be used later in your script.
By putting the structure name as the fifth parameter of the Message Function, SmartLib will save
your configuration values under the specified structure name.

Example

NSEnableAutoDefaults

HTSetStructure $GIG_STRUC_TX 0 0 0 MyConfig 0 $iTxHub $iTxSlot $iTxPort\

-ulGap 9600 \

-ucVFD1Pattern {20 22 25 26 26 33 27 21} \

-ucVFD2Pattern {30 32 35 36 36 43 37 31}

Defining a Configuration Structure (with or without Default Values) So That
Configuration Values Can Be Reused
(Both smartlib.tcl and et1000.tcl Interfaces)

You can create a configuration structure and specify the values you are interested in. Other values
will filled in with defaults. The results are the same as if SmartLib automatically create a structure
(as in the example above).

Example

struct_new MyConfig GIGTransmit

HTDefaultStructure $GIG_STRUC_TX MyConfig "" $iHub $iSlot $iPort

set MyConfig(ulGap) 9600

set MyConfig(ucVFD1Data) {20 22 25 26 26 33 27 21} \

set MyConfig(ucVFD2Data) {30 32 35 36 36 43 37 31}

HTSetStructure $GIG_STRUC_TX 0 0 0 MyConfig "" $iHub $iSlot $iPort

Sending Character Strings
The new interface allows you to send lists of numeric values. What if, within SmartLib or one of
the SmartAPIs, you need to send a string?

To send a string within SmartLib, you can use this syntax to specify that it is a character string
(different from a numeric list separated by spaces).

struct_new MyTestSetup TestSetup

set MyTestSetup(szLogFilename._char_) LogFileName.log

NOTE This is a tip for working with strings in either smartlib.tcl or et1000.tcl.

The complete configuration
including default values, gap,
VFD1, and VFD2 will be saved in
the automatically created
structure: MyConfig.

Three of 16 values
are specified.

MyConfig is used with the function
call, and can be modified or called
later in the script.

MyConfig is specified as
the structure name.

Chapter 7
Working with Tcl

SmartLib User Guide 47

Converting Existing Scripts for the New Tcl
As mentioned earlier, both old and new Tcl interfaces are supported. However, if have existing
scripts, and wish to take advantage of the new, simplified Tcl interface, you will need to make
some changes.

The paragraphs below describe possible cases when changes to existing scripts will be needed.
They describe the changes a user must make to transform a script from old style to new style Tcl
interface.

1. Use smartlib.tcl instead of et1000.tcl.

OLD
source et1000.tcl

NEW
source smartlib.tcl

2. Remove character formatting for characters. Any lines that perform character
formatting need to be modified.

OLD
set gigtx(ucTransmitMode) [format %c $GIG_CONTINUOUS_MODE]

NEW
set gigtx(ucTransmitMode) $GIG_CONTINUOUS_MODE

3. Remove unnecessary type fields (.c and .uc) from array fields.

OLD
set gigtx(ucVFD1Data.0.uc) [format %c 0xAA]
set gigtx(ucVFD1Data.1.uc) [format %c 0xAB]

NEW
set gigtx(ucVFD1Data.0) 0xAA
set gigtx(ucVFD1Data.1) 0xAB

4. Add character casting for any structure fields that are character arrays representing
strings.

OLD

set testsetup(szLogFilename.0.c) "a"

set testsetup(szLogFilename.1.c) "."

set testsetup(szLogFilename.2.c) "l"

set testsetup(szLogFilename.3.c) "o"

set testsetup(szLogFilename.4.c) "g"

NEW
set testsetup(szLogFilename._char_) "a.log"

5. Remove any ConvertCtoI commands (from misc.tcl) or any other use of the scan
command which converts chars to ints.

OLD

puts "[ConvertCtoI $myCapData(ucData.0.uc)]"

NEW

puts "$myCapData(usData.0)"

Chapter 7
Working with Tcl

SmartLib User Guide48

Additional Information
This section goes into more detail about the SmartLib Tcl interface.

When SmartLib is Loaded
When SmartLib is loaded (either smartlib.tcl or et1000.tcl), it does the following:

1. Loads the interface library (tclet100.dll in Windows, tclet100.so in Unix). This library maps
the Tcl SmartLib commands to their corresponding C/C++ SmartLib commands. (The
interface library loads the C/C++ SmartLib: etsmbw32.dll in Windows, libetsmb.so in Unix.)

2. Loads the TclStruct 1.3 library. TclStruct is an extension to Tcl used to represent data
structures in Tcl.

3. Initializes all predefined constants. All the #define statements in the C/C++ SmartLib header
files have been translated to set statements in Tcl. This enables you to use these constants in
your scripts.

4. Creates the SmartLib data structure types.

Error Checking
It is important to check for error conditions as your script is running. The utility file misc.tcl
contains error-checking commands.

• LIBCMD Displays the function name, arguments, and return value if an error is received.

• DCMD Returns the function name, arguments, and any return value.

Example

LIBCMD HTGetCounters GigCounters $iRxHub $iRxSlot $iRxPort

Understanding Data Structures
Data structures are named groups of parameter values. With the new Tcl interface (smartlib.tcl),
defining structures is optional. The older et1000.tcl interface required that you declare data
structures.

All data structure types are declared in both smartlib.tcl and et1000.tcl using the struct_typedef

command. To create a data structure using a declared structure from either interface file, use the
struct_new command. For example, to create a data structure named Mygt of the type
GIGTransmit, use the following syntax:

struct_new Mygt GIGTransmit

You can also create arrays of data structures by using the struct_new command. The following
example creates the variable MyStrms to be an array of five StreamIP structures:

struct_new MyStrms StreamIP*5

Data structure fields are referenced by this syntax. The structure name is followed by an open
parenthesis (followed by the name of the desired field to reference, followed by a close
parenthesis) . Sub-fields are separated by periods (.). For example, using the MyStrms variable
created above, you could set the third stream’s uiFrameLength field to 60 with:

set Mystrms(2.uiFrameLength) 60

Chapter 7
Working with Tcl

SmartLib User Guide 49

Memory allocated for data structures using the struct_new command can be freed like any other
variable in Tcl, by using the unset command. For example:

unset Mygt
unset MyStreams

Multi-Dimensional Arrays
Some SmartLib commands have multi-dimensional array arguments. Examples are
HTHubSlotPorts and HTCardModels. SmartLib provides two utility functions, ETMake2DArray
and ETMake3DArray, that create two- and three-dimensional arrays, respectively. The example
below shows how to create and use a multi-dimensional array:

ETMake3DArray HSP $MAX_HUBS $MAX_SLOTS $MAX_PORTS
HTHubSlotPorts HSP
for {set iPort 0} {$iPort < $MAX_PORTS} {incr iPort} {
for {set iHub 0} {$iHub < $MAX_HUBS} {incr iHub} {
for {set iSlot 0} {$iSlot < $MAX_SLOTS} {incr iSlot} {
puts $HSP($iHub,$iSlot,$iPort)

}
}

}

Pointers
In rare cases within SmartLib, a structure field may be a pointer to an array or structure. An
example of this is the Data field of the HTVFDStructure structure. In C/C++ form, the
HTVFDStructure is declared in et1000.h like this:

typedef struct

{

int Configuration;

int Range;

int Offset;

int* Data; /*pointer to an array*/

int DataCount;

} HTVFDStructure;

Since Tcl doesn't support pointers, we use another form of indirection. The Data field is declared
as a character array instead. The Tcl structure as declared in et1000.tcl and smartlib.tcl is:

struct_typedef HTVFDStructure {struct

{int Configuration}

{int Range}

{int Offset}

{char*256 Data} #holds name of the array (up to 256 chars)

{int DataCount}

}

Chapter 7
Working with Tcl

SmartLib User Guide50

The Data field is used to hold the name of an integer array created locally. The integer array is
created as an array of Int structures:

struct_new mylocalData Int*50

For example purposes, let's say we have created a variable of type

HTVFDStructure:

struct_new myvfd HTVFDStructure

After filling in the local data array...

set mylocalData(0) 0xAA

set mylocalData(1) 0xAB

... etc ...

Set the Data field to be the name of the newly created integer array:

set myvfd(Data) mylocalData

Notice that there is no $ in front of mylocalData. This is because the Data field is set to the actual
string mylocalData, the name of the variable, not the value of that variable.

Sending Arrays
In some instances, you may want to pass multiple structures (an array of basic elements as the
pData argument) when using HTSetStructure, HTGetStructure, and HTSetCommands. In these
cases you must use an array of one of the single element utility structures: UChar, Char, Int, etc.
Create an array of these structures and use that as the pData argument. The following example sets
the background data to an incrementing pattern of 60 bytes:

OLD

struct_new mydata UChar*60

for {set i 0} {$i < 60} {incr i} {

set mydata($i.uc) [format %c $i]

}

HTSetStructure $GIG_STRUC_FILL_PATTERN 0 0 0 mydata 0 $iHub $iSlot $iPort

NEW

struct_new mydata UChar*60

for {set i 0} {$i < 60} {incr i} {

set mydata($i) $i

}

HTSetStructure $GIG_STRUC_FILL_PATTERN 0 0 0 mydata 0 $iHub $iSlot $iPort

Although you may use the uiLen argument to specify the size of the data being sent or received in
the pData argument, it is not actually necessary to do so when using the Tcl interface (note the ""
as the sixth parameter). The SmartLib Tcl interface calculates the size of the data being sent or
received itself and passes this value on to the core SmartLib.

SmartLib User Guide 51

Chapter 8:
Programming in MS Windows™

This chapter provides information on programming in the Microsoft Windows™ environment. It
includes installation instructions, directory and file definitions, general tips, and information
specific to the C/C++, Tcl, Visual Basic, and Delphi compilers.

You can use this set of library functions to develop Microsoft Windows™-based applications on
any IBM PC or compatible system that supports MS Windows.

SmartLib functions can be called from any program using the cdecl convention or the FAR
PASCAL convention. Any MS Windows application capable of calling a Dynamic Link Library
(such as Excel, National Instruments LabView, and Visual Basic) can use these functions.

Installation
AutoPlay for CDs automatically runs the SmartLib installation script when you put the CD into
your PC. If AutoPlay is not enabled, run the Setup.exe from the root directory. Then follow the
step-by-step instructions. SmartLib will be installed in a directory you choose.

The Setup.exe program creates the directory structure shown below.

These directories organize files by programming language. SmartLib provides multiple program
interfaces with header and project files for each program environment. Complete source code
comments can be found in the C/C++ files contained in the Commlib directory.

See the individual sections in this chapter for detailed information on the files for each
programming language.

Chapter 8
Programming in MS Windows

SmartLib User Guide52

Directory Contents
The folders in the SmartLib directory have the following contents.

NOTE Sample code in Tcl, C, and VB can be found either on the CD or in your
installation directory.

SmartLib
This directory (or the directory you selected for SmartLib) contains directories that hold program-
specific files. In addition, it contains two files, readme.html and license.pdf.

Windows
This directory contains the smartlib.dft file, which holds default values for data structures.
(See Default Configuration Values in the SmartLib Message Functions manual for further
information.)

In addition, this directory contains contains subdirectories with SmartLib files for MS
Windows systems, as listed below.

Commlib

This directory contains SmartLib’s compiled DLL files for 16-bit and 32-bit Microsoft
Windows. It also contains project and header files for C\C++. These contain the Original
functions, the newer Message Functions, and the SmartAPI functions. This directory also
contains legacy Visual Basic *.txt files (included for compatibility).

Delphi

This directory contains the source files needed to create SmartLib applications using the
Delphi programming language.

Tcl

This directory contains subdirectories for Tcl files, as listed below.

Tcl\Tcl76

This directory contains the Tcl files for Tcl 7.6, including the SmartLib files tcl76.dll,
tclet100.dll, tclstruc.dll, and an executable file needed to install Tcl 7.6,
win76p2.exe.

Tcl\Tcl80

This directory contains the Tcl files for Tcl 8.0, including the SmartLib files tcl80.dll,
tclet100.dll, and tclstruc.dll, and three files used to install Tcl 8.0, cw3215.dll,
tcl805.exe, and tcl80vc.lib.

Tcl/TclFiles

This directory contains additional files for use with either version of Tcl.

VB

This directory contains SmartLib project and header files for Microsoft Visual Basic.
These files include the 16-bit and 32-bit versions of the Visual Basic programming
interface files. The directory also contains a file (vb_tips.txt) of tips on using SmartLib
with Visual Basic.

Chapter 8
Programming in MS Windows

SmartLib User Guide 53

General Programming Notes for Windows
The MS Windows link libraries are compiled with the Large memory model.

Import Library for 16-bit Applications
For MS Windows 16-bit applications, create an import library as follows:

1. Open a DOS box and go the directory where etsmbw16.dll is located.

2. Issue the command:

implib etsmbw16.lib etsmbw16.dll

The library will be created automatically.

NOTE SmartLib 3.07 is the last version to support 16-bit Windows.

Compatibility
Netcom Systems make every effort to keep SmartLib compatible with earlier versions. As more
functions are added, you may need to re-link your application with the new library. For Microsoft
Windows applications using the DLL, re-linking may not be necessary.

Developing with C/C++
For C/C++ program development, you must reference the ET1000.H file by using an include

statement in your source files. This file provides the function prototypes, defined values, and
structure declarations used by the library.

You must also link with the SmartLib *.LIB files that match your development environment.

Compiling Files
If you develop with Borland’s C/C++, compile using SMBW32BC.LIB.

If you develop using Microsoft’s C/C++, compile using SMBW32VC.LIB.

Applications from either compiler use the same SmartLib *.DLL during run time.

File Descriptions (Commlib Directory)
The files in the Commlib directory are used mainly when developing with C/C++, but this
directory also contains SmartLib’s central DLL files and legacy Visual Basic files.

File Name Description

atmapi.h In development for future release.

atmitems.h Library header file of defines and structure definitions for ATM SmartCards.

atmitm32.txt Visual Basic 5 legacy file needed only for compatibility with earlier Visual
Basic/SmartLib applications.

atmsgapi.h Library header file of the Smart API for ATM Signaling tests.

et1000.h Library header file of basic defines, structure definitions, and all function
prototypes.

ethitems.h Library header file of defines and structure definitions for the new Ethernet
Message Functions.

etsmb16A.dll For Netcom Systems internal use.

Chapter 8
Programming in MS Windows

SmartLib User Guide54

File Name Description

etsmb16C.dll For Netcom Systems internal use.

etsmb16R.dll For Netcom Systems internal use.

etsmb16T.dll For Netcom Systems internal use.

etsmb16V.dll For Netcom Systems internal use.

etsmbapi.txt Visual Basic 3 legacy file needed only for compatibility with earlier Visual
Basic/SmartLib applications.

Etsmbw16.dll Dynamic link library for use with 16-bit applications developed for Windows 95
or NT.

Etsmbw32.dll Dynamic link library for use with 32-bit applications developed for Windows 95
or NT.

etsmbw32.txt Visual Basic 5 legacy file needed only for compatibility with earlier Visual
Basic/SmartLib applications.

ettypes.h Library header file of necessary ETSMB variable types (such as U64 when
working with 64-bit numbers).

frame.h Library header file for the newer, easier frame-building functions:
NSCreateFrame, NSSetPayLoad, HTFrame, NSDeleteFrame,
NSCreateFrameAndPayLoad, NSModifyFrame.

fritems.h Library header file of defines and structure definitions for the Frame Relay
cards.

fstitems.h Library header file of defines and structure definitions for the Fast Ethernet
(100MB) cards.

gigitems.h Library header file of defines and structure definitions for Gigabit Ethernet
cards.

l2items.h Library header file of defines and structure definitions for Layer 2 cards.

l3items.h Library header file of defines and structure definitions for Layer 3 and Multi-
layer cards.

positems.h Library header file of defines and structure definitions for POS cards.

pppitems.h Library header file of defines and structure definitions for PPP functions.

smbw32bc.lib The Borland C/C++ compatible import library used with the ETSMBW32.DLL for
32-bit applications.

smbw32vc.lib The Visual C/C++ compatible import library used with the ETSMBW32.DLL for
32-bit applications.

stmitems.h Library header file of defines and structure definitions for some common Stream
items.

tcpisp.h In development for future release.

tcpitems.h In development for future release.

testapi.h Library header file of the Smart API for RFC-1242 and RFC-1944 Tests.

testcmmn.h Library header file of common defines and structure definitions for the Smart
APIs.

wanitems.h Library header file of defines and structure definitions common to both Wide
Area Network SmartCards (ATM and Frame Relay). This file includes defines
such as DSI, EI, and DS3.

Chapter 8
Programming in MS Windows

SmartLib User Guide 55

Developing with Tcl
Tcl is a flexible programming language, noted for its on-the-fly command-line capabilities. Tcl
enables you to test a function call from the text-based command line without having to compile a
program. This allows you to test your code line by line.

SmartLib supports Tcl Versions 7.6 and Tcl 8.0 in both Windows and UNIX. Both Tcl versions
are included with the SmartLib Software Developer’s Kit, along with the SmartLib files needed to
develop test applications with Tcl.

Related Information
For an extensive discussion on using SmartLib with Tcl, see Working with Tcl in this manual. For
Tcl examples, see the files under \Samples\Tcl\ on the CD or your installation drive.

Tcl Directory
The Tcl directory contains three subdirectories, as described below.

Tcl/Tcl76 Directory

The Tcl76 directory contains ollowing files.

File Name Description

tcl76.dll Tcl project library used when creating applications.

tclstruc.dll Tcl DLL used to create structures.

tclet100.dll SmartLib API for Tcl. This file maps Tcl calls to the main ETSMB*.DLL.

win76p2.exe Executable file for installing Tcl 7.6.

Tcl/Tcl80 Directory

The Tcl directory contains the following files.

File Name Description

tcl80.dll Tcl project library, used when creating applications.

tclstruc.dll Tcl DLL used for creating structures.

tclet100.dll SmartLib API for Tcl. This file maps Tcl calls to the main ETSMB*.DLL.

cw3215.dll DLL for installation of Tcl 8.0.

tcl805.exe Executable file for installing Tcl 8.0.

tcl80vc.lib Library file to be used with Tcl 8.0p5.

Tcl/TclFiles Directory

The TclFiles directory contains the following files.

File Name Description

misc.tcl Tcl error-handling utility used to capture return values.

show.tcl Tcl Utility used to view elements in a structure.

et1000.tcl SmartLib header file containing SmartLib defines, structure definitions,
and function prototypes for the original SmartLib Tcl interface.

smartlib.tcl SmartLib header file for the new SmartLib Tcl interface.

Chapter 8
Programming in MS Windows

SmartLib User Guide56

Developing with Delphi
File Descriptions
The required interface files are in the DELPHI directory. Each *.PAS file corresponds to a C/C++
header file (.h file). For file descriptions, see page 53, File Descriptions (Commlib Directory).

The central SmartLib DLL is located in the Commlib directory.

Developing with Visual Basic
The SmartLib Programming Library includes files for the Microsoft Visual Basic environment.
Much of the information for C/C++ also applies to Visual Basic. Exceptions and differences are
noted in this section.

Important Differences between Visual Basic and C/C++

Case Sensitivity and Parameter Names

C/C++ is case sensitive; Visual Basic is not. Some parameters with identical functions have
different names in each language, as shown below.

C/C++
Visual Basic

(SmartLib Previous)
Visual Basic

(SmartLib 3.02 and Later)

HTSTOP HTRUN_STOP Use either name.

HTSTEP HTRUN_STEP Use either name.

HTRUN HTRUN_RUN HTRUN_RUN or HTRUN_ VALUE

NOTE: Applies only to constant parameter. Do not change
the name of the HTRUN function.

ETSTOP ETRUN_STOP Use either name.

ETSTEP ETRUN_STEP Use either name.

ETRUN ETRUN_RUN Use either name.

Space for Integers

In Visual Basic, integers require the same amount of space in both the 16-bit and
32-bit versions. In C/C++, int requires a larger memory allocation in the 32-bit version than in the
16-bit version. This means that items appearing in this manual as int are declared as Long in the
SmartLib header and LIB files for 32-bit Visual Basic.

Unsigned Types

Visual Basic does not support unsigned types. In some cases where unsigned types are specified,
conversions must be made. An example is a counter result where all 32 bits are used to represent a
positive number.

Parameters for the HTVFDStructure

VB parameter names for the HTVFDStructure now match more closely the parameter names used
in C/C++.

C/C++
Visual Basic

(SmartLib Previous)
Visual Basic

(SmartLib 3.02 and Later)

*Data iPointer pData

DataCount iLength DataCount

Chapter 8
Programming in MS Windows

SmartLib User Guide 57

Files for Visual Basic
The interface files needed to use SmartLib with Visual Basic are in the Vb directory. DLLs and
legacy files are in the Commlib directory. Each *.B16 or *.B32 file corresponds to a C/C++ header
file.

For file descriptions, see page 53, File Descriptions (Commlib Directory).

The following files are used when developing with Visual Basic. To use the SmartLib functions,
data structures, and constants, include the appropriate *.b16 or *.b32 file in your VB project.

File Name Description

ETSMBW16.DLL Dynamic link library for use with 16-bit applications developed for Windows 95 or
NT. This file is located in the Commlib directory and installed in your
Windows\System directory.

ETSMBW32.DLL Dynamic link library for use with 32-bit applications developed for Windows 95 or
NT. This file is located in the Commlib directory and installed in your
Windows\System directory.

*.B16 Library header files of defines, structure definitions, and function prototypes.
These files are used for VB 16-bit.

*.B32 Library header files of defines, structure definitions, and function prototypes.
These files are used for VB 32-bit.

ETSMBAPI.TXT Visual Basic legacy files located in the Commlib directory.

ETSMBW32.TXT Visual Basic legacy files located in the Commlib directory.

ATMITM32.TXT Visual Basic legacy files located in the Commlib directory.

Chapter 8
Programming in MS Windows

SmartLib User Guide58

SmartLib User Guide 59

Chapter 9:
Programming in UNIX

This chapter provides information on programming in the UNIX environment. It includes
installation instructions, directory and file definitions, general tips, and information specific to the
C/C++ and Tcl compilers.

SmartLib supports C and Tcl (Versions 7.6 and 8.0) for the UNIX programming environment. It
includes extensive Tcl and C code examples.

SmartLib has been tested under the UNIX versions listed below:

• SunOS 4.1.4.

• Solaris 2.5.1 (SPARC architecture).

• Solaris 2.5.1 (x86 architecture).

• Red Hat Linux version 5.2 and above (x86 architecture).

Installation
To install SmartLib under UNIX, run the setup.sh installation utility and pick the files you wish to
install. The CD contains both source code and pre-compiled shared libraries.

Use the following steps.

NOTE Before you install SmartLib, the following programs must be installed on
your system and in your PATH: gcc (including the standard C++ library), make, and
gunzip.

1. Insert the SmartLib CD-ROM into your CD drive.

2. Mount the CD. This works differently on different platforms:

� Under Solaris, it is automatic. Your CD will be mounted at /cdrom/netcom.

� Under Linux, enter mount -r /dev/cdrom /mnt/cdrom. Your CD will be mounted at
/mnt/cdrom.

� Under SunOS, use the correct mount command.

3. Change to the directory where the CD is mounted.

4. Run the Setup script setup.sh. You will be prompted on how to customize the SmartLib
installation to meet your needs. Important questions include:

Where should SmartLib files be installed?

Several subdirectories are created, depending on which features you choose to install. For
system-wide access, it is best to install as root and place SmartLib in /usr/local. If you don’t
have root access, you can install in your account. For example, if your home directory is
/export/home/jdoe, enter the following:

/export/home/jdoe/smartlib

Chapter 9
Programming in UNIX

SmartLib User Guide60

Do I want precompiled versions of SmartLib, or do I want to compile the source files on my
system?

In most cases, use the precompiled versions. They have been tested and will install much
faster. If you elect not to install the precompiled version, the source files are installed instead
then compiled in your environment during the install process.

When installing with Linux, libc.so and libn.so may have been renamed so that our installation
script cannot find them. To correct this problem, create a symbolic link (a small pointer file) in
the directory where you would like libc.so.n and libn.so.n to reside. An example is shown
below.

ln -s libc.so libc.so.5
ln -s libn.so libn.so.5

Will I write scripts with Tcl?

If so, which version, 7.6 or 8.0? You can also install the Tcl programming language that is
provided on the CD.

UNIX Directory Structure and Content
The following are all possible directories that can be created when installing SmartLib under
UNIX. In practice, a subset of these will be loaded on your computer, depending on your
selections during installation. This directory structure can be expanded. The list describes the top-
level directories.

/bin
Contains files used to run the Tcl shell (tclsh is a pointer to the current Tcl shell file).

/include

Contains C header files and Tcl files used when coding with SmartLib.

/lib
Contains the compiled *.so files. This directory may include *.so files for Tcl if the Tcl interface
was selected.

/lib/tcl8.0
Contains Tcl 8.0 programming files, if the 8.0 Tcl compiler was installed.

/lib/tcl7.6
Contains Tcl 7.6 programming files, if the 7.6 Tcl compiler was installed.

/man
If Tcl is installed, numerous Tcl topics are added to the /man/* directories.

The following files are removed after a successful installation:

/tmp
Contains other directories used if source code is compiled on the PC, instead of installing
precompiled files. Once SmartLib and/or Tcl library files are compiled, this directory can be
deleted.

/tmp/proglib
Contains SmartLib’s C source files used to compile the main SmartLib *.os file libetsmb.so. This
file supports the Original Functions, Message Functions, and the SmartAPI functions.

Chapter 9
Programming in UNIX

SmartLib User Guide 61

tmp/Tcl8.0.5
Contains files and subdirectories used to install Tcl 8.0p5.

tmp/Tcl7.6
Contains files and subdirectories used to install Tcl 7.6.

tmp/tclstruct
Contains Tcl files used when compiling libtclstruct.so. Once compiled, this file is used to work
with structures in Tcl. It is stored in the /lib directory. It must be included when working with
SmartLib in Tcl.

tmp/tclext
Contains Tcl files used when compiling tclet100.so. This file is the Tcl interface to the C function
calls. Once compiled it is stored in the /lib directory. It must be included when working with
SmartLib in Tcl.

tmp/tcl
More temp files.

Developing with C/C++
For information and file descriptions specific to the SmartLib C/C++ interface, see Developing
with C/C++ (page 53).

Developing with Tcl
Basic Programming Information

For file descriptions specific to the Tcl interface, see Developing with Tcl (page 55).

Step-by-step Information

For an in-depth discussion of using SmartLib with Tcl, see Chapter 7, Working with Tcl (page 37).

Code Samples

For Tcl examples, see the files under Samples\Tcl\ on the CD or on your installation drive.

Chapter 9
Programming in UNIX

SmartLib User Guide62

SmartLib User Guide 63

Chapter 10:
Code Examples

SmartLib provides extensive source code examples in both C++ and Tcl, to guide you through the
basic tasks in working with SmartLib.

• The Tcl demo scripts contain well-commented code that is used both in training and in the
field.

• The C examples walk you through a series of basic tasks while configuring different cards for
Traditional and SmartMetrics traffic.

• A Visual Basic (VB) example shows basic test procedures when using Microsoft Visual
Basic.

We recommend that you look at the Tcl examples regardless of your programming environment.

Cross-reference to Functions and Tcl Examples
Each coding example illustrates the use of one or more Original Functions or Message Functions.
To help you find instances of function use in the Tcl examples, the tables that follow list each
coding example, describe its purpose, and also cite the functions that it demonstrates.

NOTE Many Tcl coding examples include the same commonly used functions—for
example, to link the PC to the SmartBits, group cards for testing, and start and stop
tests. These common functions are included in each instance, but the functions that
are uniquely demonstrate by a coding example are shown in boldface type.

At the end of this chapter, the table Cross-reference to Functions and Coding Examples lists all
the Original Functions and Message Functions that appear in the Tcl coding examples and
identifies the example(s) that contain them.

Where to Find the Code Examples
The SmartLib examples are located on the C D in the following directories.

Chapter 10
Code Examples

SmartLib User Guide64

Tcl Demo Scripts
The Tcl Demo scripts cover key tasks in SmartLib. They have been created, refined, and used by
our Technical Support Specialists and offer practical answers to questions received from
customers. The scripts are heavily commented and contain information useful to SmartLib
programmers working in any environment.

The tables below summarize the scripts available for the different card families. For step-by-step
instructions on working with the Tcl scripts, see Working with Tcl in this manual.

NOTE: SmartLib 3.07 contains Tcl examples for both the older Tcl interface
(et1000.tcl) and the new inproved Tcl interface (smartlib.tcl). If you do not find an
example in the smartlib_tcl directory, you can check in the et1000_tcl directory and then
make basic modifications needed for the new Tcl interface. You can also just source the
older interface file.

Examples in the et1000_tcl Directory

All Cards (AllCards)
These scripts show basic, preliminary tasks executed by SmartLib.

File Name Description Demonstrates

1stlink.tcl A simple routine to link between the PC
serial port and a Smartbits controller.

ETLink / ETUnLink

Backoff.tcl Sets the backoff time (how quickly an
Ethernet card attempts to transmit after
a collision).

HGClearGroup
HGAddtGroup
HGResetPort
HGCollisionBackoff
Aggressiveness
HGStart / HGStop

cardmod.tcl Returns the card model. Example of a
Tcl two-dimensional array.

ETMake2DArray
HTCardModels

gap.tcl Sets the Interframe Gap, decrementing
the gap with each code loop.

HTCountStructure
HTResetPort
HTDuplexMode
HTTransmitMode
HTDataLength
HTBurstCount
HTGap
HTRun
HTGetCounters

GapPerCent.tcl Calculates the % utilization and sets the
Tx parameters at that rate. (This sample
code does not work with ATM and WAN
cards.)

HTDataLength
HTSetSpeed
HTGap
HTClearPort
HTCountStructure
HTRun
HTGetCounters

Group.tcl Creates a group of two cards and
transmits traffic.

HGClearGroup
HGAddtoGroup
HGResetPort
HGStart
HGStop

Chapter 10
Code Examples

SmartLib User Guide 65

File Name Description Demonstrates

GroupCount.tcl Creates a group of two cards, transmits
traffic, and retrieves and displays group
counter information.

HGSetGroup
HGAddtoGroup
HGStart
HGStop
HGGetCounters

LibVer.tcl Example of passing strings in Tcl. Gets
the SmartLib version.

ETGetLibVersion

multi-link.tcl Demonstrates the use of multiple
simultaneous links to more than one
SmartBits chassis.

ETLink / ETUnLink
HTRun / HTStop
ETSetCurrentLink

ping_l2.tcl Sets up PING packets on a Layer 2
card.

HTResetPort
HTFillPattern
HTVFD
HTDataLength
HTTransmitMode
HTBurstCount
HTGapAndScale
HTRun

SocketLink.tcl A simple routine for an Ethernet link
between the PC and a Smartbits
controller.

ETSocketLink / ETUnLink

Startup.tcl Sample code to include at the beginning
of a Tcl script. It checks to see if the
Netcom Systems programming library
(ET1000.TCL) has been sourced.

ETGetLibVersion

Trigger.tcl Sets a group of two cards (slot 1 and 2),
then uses HGIsHubSlotPortInGroup to
test card membership. Sets up a VFD
and a trigger to match. (This sample
code does not work with ATM and WAN
cards.)

HGSetGroup
HGAddtoGroup
HGIsHubSlotPortInGroup
HGVFD
HTTrigger
HGGetCounters

vfd.tcl Demonstrates use of VFDs and shows
the differences between the VFDs.
Creates traffic with VFD1, VFD2, and
VFD3.

HTFillPattern
HTVFD

ATM (ATMCard)
These scripts work with the ATM SmartCards.

File Name Description Demonstrates

Atm_ilmi.TCL Allows an ATM Card to register its 20-
byte address with the network device
(ATM switch) it is connected to. After
successful registration, it displays the
ILMI Status information.

HTSetCommand with:
ATM_ILMI_REGISTER
ATM_ILMI_DEREGISTER

HTGetStructure with:
ATM_ILMI_INFO

ATM_SAAL.tcl Establishes management connections
with an ATM switch.

HTSetCommand with:
ATM_SAAL_ESTABLISH

HTGetStructure with:
ATM_SAAL_INFO

Chapter 10
Code Examples

SmartLib User Guide66

File Name Description Demonstrates

ATM_SetCount.tcl Removes all streams from cards, then
sets up a range of PVC streams and
starts transmitting. A back-to-back test,
it ensures that the number of frames
received equals the number of frames
transmitted.

HTGetStructure with:
ATM_CARD_CAPABILITY
ATM_STREAM_DETAIL
ATM_STREAM_DETAIL_INFO
ATM_VCC_INFO

HTSetStructure with:
ATM_STREAM_CONTROL
ATM_STREAM
ATM_FRAME_DEF

ATM_Status.tcl Uses HTGetEnhancedStatus and
HTGetLED Original Functions to
checks the status and LED state of an
ATM card.

HTGetEnhancedStatus
HTGetLED

atm_trig.tcl Uses ATM_Set&Count.tcl as a base,
but adds triggers and uses a different
mechanism to retrieve individual VCC
frame counts.

HTGetStructure with:
ATM_CARD_CAPABILITY
ATM_STREAM_DETAIL_INFO
ATM_VCC_INFO
ATM_CONN_TRIGGER_INFO

HTSetStructure with
ATM_STREAM_CONTROL
ATM_STREAM

ATMClip.tcl Shows Classical PVC to PVC
connections between two cards;
creates two PVC streams. This demo
requires conection to a device with a
CLIP server if you use the CLIP server
commands.

HTGetStructure with:
ATM_CARD_CAPABILITY

HTSetStructure with:
ATM_STREAM
ATM_FRAME_DEF
ATM_STREAM_CONTROL

HTRun

ATMData.tcl Retrieves and displays the settings
and capabilities of an ATM card.

HTGetStructure with:
ATM_CARD_TYPE
ATM_CARD_INFO
ATM_CARD_CAPABILITY

ATMGetCounts.tcl Simple PVC to PVC connection
between two cards. Shows use of
enhanced stream indexes by using the
newer ATM_STREAM_VCC_INFO
command to get per-stream data,
without needing to get the connection
index first.

HTGetStructure with:
ATM_CARD_CAPABILITY

HTSetStructure with:
ATM_STREAM_CONTROL
ATM_FRAME_DEF

HGSetGroup
HGAddtoGroup
HGClearPort
HGStart / HGStop

ATMSonetInfo.tcl Retrieves and displays SONET Section
/ Line / Path error information.

HTGetStructure with:
ATM_SONET_INFO

Chapter 10
Code Examples

SmartLib User Guide 67

File Name Description Demonstrates

pppdemo.tcl Tests PPP frames encapsulated over
ATM using LLC Encapsulation per
RFC-1483, "Multiprotocol
Encapsulation over ATM AAL-5", or the
VC-based multiplexing techinique per
RFC-2364, "PPP over AAL-5."

HTGetStructure with:
ATM_CARD_CAPABILITY
ATM_STREAM_DETAIL_INFO
PPP_STATUS_INFO

HTSetStructure with:
ATM_STREAM_CONTROL
ATM_LINE
ATM_STREAM
ATM_STREAM_PARAMS_COPY
ATM_STREAM_PARAMS_FILL
PPP_PARAMS_COPY
PPP_PARAMS_FILL
PPP_SET_CTRL
ATM_STREAM_VCC_INFO

HGClearGroup
HGAddtoGroup
HGClearPort
HGStart / HGStop

ET-1000 (et1000)
These scripts deal with ET-1000 functionality. The ET-1000 is a precursor to the SMB 1000 with
two ports and SmartCards that are not removable.

The ET-1000 examples include code for an ET-1000 as well as for ST-64XX cards emulating an
ET-1000. This functionality can be useful when, for example, you have ST-6410 SmartCards and
want to capture test frames.

The ET functions listed below are documented in Appendix A, Original Functions for the ET-
1000 Only (see page 197).

File Name Description Demonstrates

ET1000MODE.tcl Defines frames with VFDs and then
transmits traffic. These routines use ST-
64XX cards and a SmartBits chassis to
access ET-1000 functionality.

HTSelectTransmit
HTSelectReceive
ETDataLength
ETDataPattern
ETVFDParams
ETSetSel
ETVFDRun
ETRun

ETVFD_CYCLE.TCL Defines frames with VFDs and then
transmits traffic. These routines execute
the same functions as ET1000Mode.tcl
(above) but control an actual ET-1000.

Same as above plus:

ETBurst

multi.tcl General overview of ET-1000
capabilities.

Same as above plus:

ETReceiveTrigger
ETMFCounter
ETCaptureParams
ETGetCapturePacket

Chapter 10
Code Examples

SmartLib User Guide68

Ethernet (ETH)
These scripts work 10Mbps or 10/100Mbps Ethernet cards and 10/100 Layer 3 cards. For
completeness, the properties for all cards are presented; however, running against non-Ethernet
cards will return an error code from the function.

File Name Description Demonstrates

ETHCardInfo.tcl Demonstrates use of the
ETH_CARD_INFO message function.
Allows use of legacy Ethernet card
functions with HTGetStructure Message
Function.

HTGetStructure with:
ETH_CARD_INFO

ETHTransmit.tcl Demonstrates how to set up test frames
then transmit.

HTSetStructure with:
ETH_TRANSMIT

Fast Ethernet (FastCard)
These scripts work with the SX-7210 and SX7410 Fast Ethernet SmartCards. These cards support
10/100 Mbps traffic. They do not support histograms and VTEs; that is, there is no signature field.

File Name Description Demonstrates

capture.tcl Configures a main traffic stream as well
as an alternate stream (e.g., an error
stream), transmits traffic, then captures
incoming traffic and displays the
capture.

HTTransmitMode
HTBurstCount
HTDataLength
HTFillPattern

HTSetStructure with:
FST_ALTERNATE_TX
FST_CAPTURE_PARAMS
FST_CAPTURE_COUNT_INFO

Collision.tcl Demonstrates how to set up collision
generation on SX-74xx and SX-72xx
cards.

HTCollision
HGSetGroup
HGAddtoGroup
HGDuplexMode
HGClearPort
HTTransmitMode
HTBurstCount
HTRun
HGGetCounters

EnhancedStats.tcl Uses HTGetCardModel to ensure a
FastCard is selected, then does a
bitwise AND to see if the
FAST7410_STATUS_LINK
(0x0000200h) is set.

HTGetCardModel
HTGetEnhancedStatus

FastTrig&VFD.tcl Shows how to set up VFDs and trigger
on a pattern, then get and display
counter data.

HTResetPort
HGSetGroup
HGAddtoGroup
HGSetSpeed
HTTransmitMode
HTBurstCount
HTFillPattern
HTTrigger
HTGetCounters

Chapter 10
Code Examples

SmartLib User Guide 69

File Name Description Demonstrates

gap.tcl Illustrates setting gap, speed, and
duplex mode.

HTResetPort
HTSetSpeed
HTDuplexMode
HTTransmitMode
HTDataLength
HTGap
HTRun
HTGetcounters

mii.tcl Demonstrates the use of the
HTReadMII and HTWriteMII commands
to enable Autonegotiation and to display
the contents of the MII registers and
force Autonegotiation.

HTResetPort
HTFindMIIAddress
HTReadMII
HTWriteMII

setspeed.tcl Uses the HT commands to set speed,
mode, and duplex mode for individual
cards and for groups of cards.

HTResetPort
HTSetSpeed
HTDuplexMode
HTTransmitMode
HTDataLength
HTRun
HGClearGroup
HGAddtoGroup
HGResetPort
HGSet Speed
HGDuplexMode
HGTransmitMode
HGDataLength
HGStart / HGStop

Gigabit Ethernet (GIG)
These scripts work with the Gigabit Ethernet SmartCards and SmartModules, including the GX-
1405, GX-1405B, LAN-6200A and LAN-3200A.

File Name Description Demonstrates

GIGCount.tcl Shows how to create a group of Gigabit
cards, define an array of counter
structures, then draw a simple report
and fill in counter data.

HGSetGroup
HGAddtoGroup

HTSetStructure with:
GIG_STRUC_TX

HGClearPort
HGStart / HGStop
HGGetCounters

GIGVFD.tcl Basic demonstration of how to start,
transmit, capture, and diplay data with
Gigabit cards.

HTSetStructure with:
GIG_STRUC_FILL_PATTERN
GIG_STRUC_VFD3
GIG_STRUC_CAPTURE_SETUP
GIG_STRUC_CAP_DATA_INFO

HTRun

Chapter 10
Code Examples

SmartLib User Guide70

Layer 3 (Layer3)
These scripts illustrate how to create streams with SmartMetrics SmartCards such as the L3-6710
and the ML-7710.

File Name Description Demonstrates

ipstream.tcl Creates multiple IP streams. HTSetStructure with
L3_DEFINE_IP_STREAM
L3_DEFINE_MULTI_IP_STREAM

ipxstream.tcl Creates multiple IPX streams. HTSetStructure with
L3_DEFINE_IPX_STREAM
L3_DEFINE_MULTI_IPX_STREAM

L2-L3.tcl Shows how to switch the ML-
7710 SmartCard from Traditional
mode to SmartMetrics mode.

HTGetStructure with
L3_CAPTURE_PACKET_DATA_INFO

HTSetStructure with
L3_DEFINE_IP_STREAM

HTVFD
HTTransmitMode
HTBurstCount
HTRun

l3_hist_raw_tags.tcl Sets up a series of streams
externally (by sourcing
ipstream.tcl), then transmits a
burst of packets and displays the
distribution.

HTGetStructure with
L3_DEFINE_STREAM_COUNT_INFO
L3_HIST_RAW_TAGS_INFO

HTSetCommand with
L3_HIST_RAW_TAGS

HTTransmitMode
HTBurstCount
HTRun

L3_HIST_V2_LAT_
PER_ST.tcl

Sets up a series of streams
externally (by sourcing
ipstream.tcl) then transmits a
burst of packets and displays the
distribution.

HTGetStructure with
L3_DEFINE_STREAM_COUNT_INFO
L3_HIST_RAW_TAGS_INFO

HTSetCommand with
L3_HIST_RAW_TAGS

HTTransmitMode
HTBurstCount
HTRun

l3_SB.tcl Layer 3 script that calls
SBstream.tcl to set up Layer 3
cards and create streams, then
transmits for three seconds and
displays number of frames.

HTSetCommand with
L3_START_ARPS
L3_CAPTURE_OFF_TYPE
L3_CAPTURE_ALL_TYPE

HTGetStructure with
L3_CAPTURE_COUNT_INFO
L3_CAPTURE_PACKET_DATA_INFO

HTTransmitMode
HTBurstCount
HTDataLength
HTFillPattern
HTRun

L3_STREAM_INFO.tcl Sets up one IP stream on an ML-
7710 (Layer 3) card, then reads
and displays card data.

HTSetStructure with
L3_DEFINE_IP_STREAM

HTGetStructure with
L3_DEFINED_STREAM_COUNT_INFO
L3_STREAM_INFO

Chapter 10
Code Examples

SmartLib User Guide 71

File Name Description Demonstrates

L3_V2_HIST_LAT.tcl Sets up a series of streams
externally by sourcing
ipstream.tcl, then transmits a
burst of packets and displays the
distribution.

HTGetStructure with
L3_DEFINED_STREAM_COUNT_INFO
L3_HIST_V2_LATENCY_INFO

HTSetCommand with
L3_HIST_V2_LATENCY

HTTransmitMode
HTBurstCount
HTRun

l3min.tcl Performs a minimum
configuration for a SmartMetrics
card, sets up traffic streams,
runs, and displays number of
frames.

HTSetCommand with
L3_START_ARPS
L3_CAPTURE_OFF_TYPE
L3_CAPTURE_ALL_TYPE

HTGetStructure with
L3_CAPTURE_COUNT_INFO
L3_CAPTURE_PACKET_DATA_INFO

HTTransmitMode
HTBurstCount
HTDataLength
HTFillPattern
HTRun

L3mod_stream_array.tcl Creates a source IP stream on a
Layer 3 card, adds additional
streams, and modifies the packet
length field.

HTSetStructure with
L3_DEFINE_IP_STREAM
L3_DEFINE_MULTI_IP_STREAM
L3_MOD_STREAMS_ARRAY

L3PingCount.tcl Sets up the Layer 3 stack on an
ML-7710 SmartCard.

HTSetSpeed
HTDuplexMode
HTTransmitMode
HTBurstcount
HTClearPort
HTLayer3SetAddress
HTRun
HTGetEnhancedCounters

L3stack.tcl Configures the SmartCard’s local
MAC address, IP address,
gateway IP address, and PING
target address.

HTLayer3SetAddress

L3Trigger.tcl Illustrates the use of triggers on
Layer 3 cards.

HTResetPort
HGSetGroup
HGAddtoGroup
HGSetSpeed
HTTransmitMode
HTBurstCount
HTTrigger

HTGetStructure with
L3_CAPTURE_PACKET_DATA_INFO
L3_CAPTURE_COUNT_INFO

HTSetStructure with
L3_DEFINE_IP_STREAM
L3_DEFINE_MULTI_IP_STREAM

HTSetCommand with
L3_CAPTURE_OFF_TYPE
L3_CAPTURE_ALL_TYPE
L3_CAPTURE_TRIGGERS_TYPE

Chapter 10
Code Examples

SmartLib User Guide72

L3Zero.tcl Shows the number of streams on
the target L3 card and prompts
the user if the streams should be
removed. Useful when checking
other programs to validate the
number of created L3 streams.

HTGetStructure with
L3_DEFINE_STREAM_COUNT_INFO

HTSetStructure with
L3_DEFINE_SMARTBITS_STREAM

SBStream.tcl Script called by an external
program to create a SmartBits
type stream, with iHub iSlot iPort
and DATA_LENGTH values set
by the calling program.

HTSetStructure with
L3_DEFINE_SMARTBITS_STREAM

udpstream.tcl Creates multiple UDP streams. HTSetStructure with
L3_DEFINE_UDP_STREAM
L3_DEFINE_MULTI_UDP_STREAM

LibX
The LibX Utilities are a family of Tcl procedures, created with the Programming Library, that
simplify setting up and operating cards and chassis. Developed for technical support, they provide
a quick, command line-based method to set up cards, display essential configuration parameters,
and run test programs.

See Using LibX for Simplified Library Control (page 85) for complete information, as well as to
the ReadMe.pdf file in the LibX directory.

The LibX directory contains the following files:

File Name Description Demonstrates

l3x.tcl Layer 3 extension procedures for
the programming library.

libx.tcl Basic extension procedures for the
programming library.

loadx.tcl Loads the l3x.tcl and libx.tcl
extensions.

unloadx.tcl Unloads the l3x.tcl and libx.tcl
extensions.

See Using LibX for Simplified Library
Control (page 85) for information.

Packet Over Sonet (POS)
This script illustrates how to work with the Packet Over Sonet (POS) SmartModules (POS-
6500A/POS-3500A and POS-6500B/POS-3500B).

File Name Description Demonstrates

L3Extension.tcl Simple program using two POS-
3500A SmartModules connected
back-to-back in a SmartBits 600.

HGSetGroup
HGAddtoGroup
HGIsHubSlotPortInGroup
HGClearPort
HGStart
HGGetCounters

HTSetStructure with
POS_CARD_PORT_ENCAP
L3_DEFINE_IP_STREAM
L3_DEFINE_IP_STREAM_EXTENSION

Chapter 10
Code Examples

SmartLib User Guide 73

SmartAPI for SmartApplications (SmartAPI)
This script works with the SmartLib SmartAPI for SmartApplications.

File Name Description Demonstrates

SmartAPI.tcl Demonstrates the four
SmartApplications tests:
Throughput, Back-to-Back, Packet
Loss, and Latency.

Refer to the SmartAPI for
SmartApplications User Guide for
information on these tests.

SmartBits 6000 (SMB6000)
This script works with SmartBits 6000/600 and 2000/200 systems.

File Name Description Demonstrates

Controller.tcl Illustrates differences between the
SMB2000/200 and SMB6000/600
chassis types, along with the two
port-mapping modes: Compatible
and Native.

ETSocketLink
ETGetProduct Family
ETGetController
NSSetPortMappingMode
ETUnLink

Token Ring (TokenRing)
This script works with Token Ring SmartCards.

File Name Description Demonstrates

TokenRing.tcl Sets up transmission parameters
and two VFDs on a Token Ring
SmartCard

HTResetPort
HTSetTokenRingProperty
HTVFD

Examples in the smartlib_tcl Directory
These examples make use of the new, improved Tcl interface supported by the smartlib.tcl
interface file. They mirror the functionality of the samples in /Samples/et1000_tcl/ with the
exception that they use the default values file. For this reason, some configuration settings may be
different.

For detailed information about these examples, see the corresponding /et1000_tcl/ entry in the
tables above. The new Tcl interface files under /Samples/smartlib_tcl/ correspond to the samples
contained in the following et1000_tcl directories:

/GIG

/POS

/Layer3

/SMB6000

Chapter 10
Code Examples

SmartLib User Guide74

Examples of Functions in the Tcl Code Examples
The table below lists instances of Original Functions and Message Functions in the sample code.
For examples for GIG, Layer3, POS, and SMB 6000 using the new Tcl interface, see the
/Samples/smartlib_tcl directory.

Function Name Sample Directory Code Sample Name

ETBurst et1000 ETVFD_CYCLE.TCL

ETCaptureParams et1000 multi.tcl

ETDataLength et1000 ET1000MODE.tcl

ETDataPattern et1000 ET1000MODE.tcl

ETGetCapturePacket et1000 multi.tcl

ETGetCounters et1000 multi.tcl

AllCards LibVer.tclETGetLibVersion

AllCards Startup.tcl

AllCards 1stlink.tclETLink / ETUnLink

AllCards multi-link.tcl

ETMake2DArray AllCards cardmod.tcl

ETReceiveTrigger et1000 multi.tcl

ETMFCounter et1000 multi.tcl

ETRun et1000 ET1000MODE.tcl

ETSetCurrentLink AllCards multi-link.tcl

ETSetSel et1000 ET1000MODE.tcl

ETSocketLink / ETUnLink AllCards SocketLink.tcl

ETVFDParams et1000 ET1000MODE.tcl

ETVFDRun et1000 ET1000MODE.tcl

HGAddtoGroup AllCards Backoff.tcl

AllCards Group.tcl

AllCards GroupCount.tcl

AllCards Trigger.tcl

ATMCard ATMGetCounts.tcl

FastCard Collision.tcl

FastCard FastTrig&VFD.tcl

ETH setspeed.tcl

GIG GIGCount.tcl

HGAddtoGroup

Layer3 L3Trigger.tcl

AllCards Backoff.tcl

AllCards Group.tcl

ATMCard ATMGetCounts.tcl

HGClearGroup

ETH setspeed.tcl

FastCard Collision.tclHGClearPort

GIG GIGCount.tcl

HGCollisionBackoffAggressiveness AllCards Backoff.tcl

HGDataLength ETH setspeed.tcl

FastCard Collision.tclHGDuplexMode

ETH setspeed.tcl

AllCards GroupCount.tclHGGetCounters

AllCards Trigger.tcl

Chapter 10
Code Examples

SmartLib User Guide 75

Function Name Sample Directory Code Sample Name

FastCard Collision.tcl

GIG GIGCount.tcl

HGIsHubSlotPortInGroup AllCards Trigger.tcl

AllCards Backoff.tcl

AllCards Group.tcl

HGResetPort

ETH setspeed.tcl

AllCards GroupCount.tcl

AllCards Trigger.tcl

ATMCard ATMGetCounts.tcl

FastCard Collision.tcl

FastCard FastTrig&VFD.tcl

GIG GIGCount.tcl

HGSetGroup

Layer3 L3Trigger.tcl

ETH setspeed.tcl

Layer3 setspeed.tcl

HGSetSpeed

Layer3 L3Trigger.tcl

AllCards Group.tcl

AllCards Backoff.tcl

AllCards GroupCount.tcl

ATMCard ATMGetCounts.tcl

ETH setspeed.tcl

HGStart / HGStop

GIG GIGCount.tcl

FastCard capture.tcl

FastCard Collision.tcl

FastCard FastTrig&VFD.tcl

FastCard gap.tcl

FastCard setspeed.tcl

Layer3 L3_V2_HIST_LAT.tcl

Layer3 l3min.tcl

Layer3 L3PingCount.tcl

Layer3 L3Trigger.tcl

HGTransmitMode

ETH setspeed.tcl

HGVFD AllCards Trigger.tcl

AllCards capture.tcl

FastCard gap.tcl

FastCard Collision.tcl

FastCard FastTrig&VFD.tcl

Layer3 L3_V2_HIST_LAT.tcl

Layer3 l3min.tcl

Layer3 L3PingCount.tcl

HTBurstCount

Layer3 L3Trigger.tcl

HTCardModels AllCards cardmod.tcl

AllCards GapPerCent.tclHTClearPort

Layer3 L3PingCount.tcl

HTCollision FastCard Collision.tcl

HTCountStructure AllCards gap.tcl

Chapter 10
Code Examples

SmartLib User Guide76

Function Name Sample Directory Code Sample Name

AllCards GapPerCent.tcl

AllCards gap.tcl

FastCard capture.tcl

AllCards GapPerCent.tcl

FastCard gap.tcl

ETH setspeed.tcl

HTDataLength

Layer3 l3min.tcl

AllCards gap.tcl

FastCard gap.tcl

ETH setspeed.tcl

HTDuplexMode

Layer3 L3PingCount.tcl

AllCards vfd.tcl

FastCard capture.tcl

FastCard FastTrig&VFD.tcl

HTFillPattern

Layer3 l3min.tcl

HTFindMIIAddress ETH mii.tcl

AllCards gap.tcl

AllCards GapPerCent.tcl

HTGap

FastCard gap.tcl

HTGetCardModel FastCard EnhancedStats.tcl

AllCards gap.tcl

AllCards GapPerCent.tcl

FastCard FastTrig&VFD.tcl

FastCard gap.tcl

FastCard gap.tcl

HTGetCounters

FastCard gap.tcl

HTGetEnhancedCounters Layer3 L3PingCount.tcl

ATM ATM_Status.tclHTGetEnhancedStatus

FastCard EnhancedStats.tcl

HTGetLED ATMCard ATM_Status.tcl

HTGetStructure with:

ATM_CARD_CAPABILITY ATMCard ATMGetCounts.tcl

ATM_CARD_CAPABILITY ATMCard ATM_Clip.tcl

ATMCard ATM_SET&Count.tcl

ATMCard atm_trig.tcl

ATM_CARD_CAPABILITY

ATMCard ATMData.tcl

ATM_CARD_INFO ATMCard ATMData.tcl

ATM_CARD_TYPE ATMCard ATMData.tcl

ATM_CONN_TRIGGER_INFO ATMCard atm_trig.tcl

ATM_SAAL_INFO ATMCard ATM_SAAL.tcl

ATM_SONET_INFO ATMCard ATMSonetInfo.tcl

ATM_STREAM_DETAIL ATMCard ATM_SET&Count.tcl

ATM_STREAM_DETAIL_INFO ATMCard ATM_SET&Count.tcl

ATMCard ATM_SET&Count.tclATM_VCC_INFO

ATMCard atm_trig.tcl

ETH_CARD_INFO ETH ETHCardInfo.tcl

Chapter 10
Code Examples

SmartLib User Guide 77

Function Name Sample Directory Code Sample Name

Layer3 l3min.tclL3_CAPTURE_COUNT_INFO

Layer3 L3Trigger.tcl

L3_CAPTURE_PACKET_DATA_INFO Layer3 l3min.tcl

HTLayer3SetAddress Layer3 L3PingCount.tcl

HTReadMII ETH mii.tcl

AllCards gap.tcl

FastCard FastTrig&VFD.tcl

FastCard gap.tcl

ETH mii.tcl

ETH setspeed.tcl

HTResetPort

Layer3 L3Trigger.tcl

AllCards gap.tcl

AllCards GapPerCent.tcl

AllCards multi-link.tcl

FastCard Collision.tcl

FastCard gap.tcl

ETH setspeed.tcl

GIG GIGVFD.tcl

Layer3 L3_V2_HIST_LAT.tcl

Layer3 l3min.tcl

Layer3 L3PingCount.tcl

HTRun

Layer3 L3Trigger.tcl

HTSelectReceive et1000 ET1000MODE.tcl

HTSelectTransmit et1000 ET1000MODE.tcl

HTSetCommand with:

ATM_ILMI_REGISTER ATM ATM_ILMI_REGISTER

ATM_ILMI_DEREGISTER ATM ATM_ILMI_REGISTER

ATM_SAAL_ESTABLISH ATM ATM_SAAL.tcl

L3_HIST_V2_LATENCY Layer3 L3_V2_HIST_LAT.tcl

L3_START_ARPS Layer3 l3min.tcl

Layer3 l3min.tclL3_CAPTURE_OFF_TYPE

Layer3 L3Trigger.tcl

Layer3 l3min.tclL3_CAPTURE_ALL_TYPE

Layer3 L3Trigger.tcl

L3_CAPTURE_TRIGGERS_TYPE Layer3 L3Trigger.tcl

Chapter 10
Code Examples

SmartLib User Guide78

AllCards GapPerCent.tcl

FastCard gap.tcl

ETH setspeed.tcl

HTSetSpeed

Layer3 L3PingCount.tcl

HTSetStructure with:

ATM_STREAM_CONTROL ATMCard ATMGetCounts.tcl

ATM_STREAM_CONTROL ATMCard ATM_Clip.tcl

ATMCard atm_trig.tclATM_STREAM_CONTROL

ATMCard ATM_SET&Count.tcl

ATM_STREAM ATMCard ATM_Clip.tcl

ATMCard ATM_SET&Count.tclATM_STREAM

ATMCard atm_trig.tcl

ATM_FRAME_DEF ATMCard ATM_SET&Count.tcl

ATM_FRAME_DEF ATMCard ATM_Clip.tcl

ATM_FRAME_DEF ATMCard ATMGetCounts.tcl

ETH_TRANSMIT ETH ETHTransmit.tcl

FST_ALTERNATE_TX FastCard capture.tcl

FST_CAPTURE_COUNT_INFO FastCard capture.tcl

FST_CAPTURE_PARAMS FastCard capture.tcl

GIG_STRUC_TX GIG GIGCount.tcl

GIG_STRUC_FILL_PATTERN GIG GIGVFD.tcl

GIG_STRUC_VFD3 GIG GIGVFD.tcl

GIG_STRUC_CAPTURE_SETUP GIG GIGVFD.tcl

GIG_STRUC_CAP_DATA_INFO GIG GIGVFD.tcl

Layer3 ipstream.tcl

Layer3 L3Trigger.tcl

L3_DEFINE_IP_STREAM

Layer3 L3mod_stream_array.tcl

Layer3 ipstream.tcl

Layer3 L3mod_stream_array.tcl

L3_DEFINE_MULTI_IP_STREAM

Layer3 L3Trigger.tcl

L3_DEFINE_IPX_STREAM Layer3 ipxstream.tcl

L3_DEFINE_MULTI_IPX_STREAM Layer3 ipxstream.tcl

L3_DEFINE_SMARTBITS_STREAM Layer3 SBStream.tcl

L3_DEFINE_UDP_STREAM Layer3 udpstream.tcl

L3_DEFINE_MULTI_UDP_STREAM Layer3 udpstream.tcl

L3_MOD_STREAMS_ARRAY Layer3 L3mod_stream_array.tcl

AllCards Trigger.tcl

FastCard FastTrig&VFD.tcl

HTTrigger

Layer3 L3Trigger.tcl

HTVFD AllCards vfd.tcl

HTWriteMII ETH mii.tcl

Chapter 10
Code Examples

SmartLib User Guide 79

C Demo Modules
The Samples\C subdirectory includes demo modules for ATM, the LAN-6100A SmartModule,
Layer 2, and Layer 3.

These modules are divided into steps to enable you to see the actions needed for basic testing with
SmartLib.

ATM (Atm)
This module demonstrates PPP over ATM for ATM-2 SmartCards (AT-9155c and
AT-9622).

LAN-6100A (Lan6100a)
This module demonstrates how to work with the LAN-6100A SmartModule. The demo is based on
the following steps.

Step 1 Connect to SmartBits shows how to use NSSocketLink() to connect to the SmartBits chassis,
using the Native port mapping mode. (Throughout the demo, the equivalent message functions for
the Compatible port mapping are also shown as comments.)

Step 2 Learn Target Port MAC Addresses shows how to generate ARP and PING frames and to
retrieve the MAC address of the device with the target IP address.

Step 3 Select Transmit and Receive Ports shows a simple algorithm that is used to pair up the ports and
verify the results of the management frames generated in Step 2, based on the table PortAddrTable

PreSettingPortsTable[NumPorts] defined in the demo.h file.

Step 4 Set up Burst of IP Frames demonstrates how to use NSCreateFrame(), NSModifyFrame(), and
HTFrame() to configure IP traffic on the transmit ports.

Step 5 Test Layer 2 and Layer 3 Counters demonstrates the counters on the LAN-6100A. using
HTGetStructure with the ETH_COUNTER_INFO and FST_PROTOCOL_COUNTER_INFO
iType1s.

Step 6 Test IP Checksum demonstrates the ability of SmartLib to generate IP traffic with invalid IP
Checksums and the LAN-6100A’s ability to count these packets, as well as to calculate the correct
checksum when configured to do so.

Step 7 Display Capture Data shows the capture features of the LAN-6100A and backward
compatibility with the SX-7410.

Step 8 Disconnect and Clean-up is self-explanatory.

Layer 2
The Layer 2 module demonstrates how to set up unidirectional traffic between source and
destination with cards in Traditional (Layer 2) mode. Card configurations cover each type of card.

Traditional mode uses VFDs (Variable Field Definitions) to set up one or more traffic streams.
ARP responses and histogram results are not available. Complex Layer 2, 3, and 4 testing is more
difficult than in SmartMetrics mode.

Chapter 10
Code Examples

SmartLib User Guide80

Layer 3
The Layer 3 module demonstrates how to set up unidirectional traffic between source and
destination with cards in SmartMetrics mode. Card configurations cover each type of card that
supports SmartMetrics. In SmartMetrics mode, a card uses VFDs as well as the more complex
VTEs to set up traffic streams. ARP responses and other network interactions are automatic.
Relational histogram results are available.

A card running in SmartMetrics mode provides a number of important capabilities, including:

• Multiple streams configurable on a per-stream basis

• True ARP interaction

• Histogram results

A different histogram is enabled on the card, depending on whether you wish to view Latency over
Time, Latency per Stream, Sequence Tracking, and so on.

Common Steps in the Layer 2 and Layer 3 C Demos
The Layer 2 and Layer 3 C demos share five basic steps, as shown in the Tcl snippet below. (This
is taken from the main routine in demo.cpp on the installation CD.)

Step1_ExamineSystem(); /* Show card types, models and version
information */

Step2_DetermineConnections(); /* Determine connections */
Step3_ResetAndSetupAll(); /* Reset and setup each card */

Step4_Transmit(STAGGERED_START); /* Transmit packets */
Step5_ShowAllCounters(); /* Show counters */

Step4_Transmit(SYNCHRONIZED_START); /* Transmit packets */
Step5_ShowAllCounters(); /* Show counters */

/* Terminate our session with SmartBits */
printf(“\nPress any key to UnLink and close the window\n”);

The five steps are the following:

Step 1 Query the cards to determine what the kinds of cards are present in the chassis.

Step 2 Order cards by pairs, so that each destination card has a source card.

� For Layer2 and Layer3 demos, the next card of the same type is configured as the destination card.
Unpaired cards are not used in the test.

� Cards in the SmartAPI demo are paired according to the test configuration.

Step 3 Set cards to a known state, then sends the proper configuration for each card type. Step 3 is the
most complex step of this demo series.

Step 4 Start the test traffic.

Step 5 Display test results.

Chapter 10
Code Examples

SmartLib User Guide 81

Files for C Demos
Each C demo contains the following file types. Each module uses a slightly different set of files;
all modules, however, have common features.

NOTE For the Layer 3 Demo, there is no cpp file. You display results using one of
the histogram modules.

File Description

Demo*.cpp (or) *Main.cpp The central file used to link the PC to the SmartBits chassis
and call the test Steps.

Step1.cpp (through) Step5.cpp Files containing code that executes the demo steps. See
Common Steps in the C Demos above for definitions.

Utils.cpp A catch-all file that contains, for example, certain constants,
error code, and the routines used for reading from the *.ini
files found in Smart Signaling and SmartAPI.

*.h The header file for the individual demo project.

Running the C Demos
Use the following steps to compile and run the C demos.

MS Windows

1. Create a 32-bit Console Applications Project.

2. Add the source files for the desired demo and the appropriate Netcom Systems library into the
project

3. Compile the demo.

4. Run the program.

UNIX

1. Create a makefile that compiles all cpp files, then links them with libetsmb.so to produce an
executable.

2. Run the executable.

Chapter 10
Code Examples

SmartLib User Guide82

Visual Basic (VB) Demo
The Visual Basic demo module is intended to show basic test procedures when using Microsoft
Visual Basic.

To launch the demo, go to the SmartLib\Samples\VB directory from the SmartLib CD and double-
click on the sample.exe icon. The SmartLib Sample Suite window opens. (To view the source
code, launch sample.vbp.)

How to Run the Demo
Use the following steps to run a VB sample.

1. From the Samples pull-down menu, select a sample to run. Currently, one sample is
supported: under General, a module named Link. This is a basic task that links a PC to a
SmartBits chassis. (Other procedures will be added in subsequent SmartLib releases.)

NOTE General/Link is the default sample when you first launch the sample shell.
To run the sample, you need only make sure that the connection type is correct, and
then click Run.

Select a sample
from the Samples
pull-down menu.

This field shows the
selected sample.
The Description
text box explains
what it does.

Assumptions tells
you what hardware
setup is required to
run the sample.

The Run Sample
text box provides
status messages
while the sample
executes.

Chapter 10
Code Examples

SmartLib User Guide 83

2. The Description text box explains the sample, which is identified by the heading (here,
General/Link).

3. The Assumptions text box tells you what hardware setup is needed to run the procedure.

4. Current Connection Setup shows the current interface between the PC and the SmartBits.
Here, an IP socket connecction is being used, and the IP address defined for SmartBits is
10.100.10.81.

5. To update the connection type, select Update Connection. Then use the window options to
specify either Serial port connection or Ethernet connection with the SmartBits chassis IP
address.

6. Select Run to start the sample.

7. The Run Sample text box displays status messages as the procedure runs.

Setting Break Points
You can view the actual SmartLib functions that are executed by the sample by going to the VB
debug mode and setting a break point at the Run command. Doing this can show you in detail how
Library functions are used in each sample.

Chapter 10
Code Examples

SmartLib User Guide84

SmartLib User Guide 85

Chapter 11:
Using LibX for Simplified Library Control

The LibX Utilities are a family of Tcl procedures, created with the Netcom Systems Programming
Library and designed to simplify the process of setting up and operating Netcom Systems cards
and chassis.

These procedures were developed for Technical Support to allow quick, command line-based
procedures to set up SmartCards and display essential card configuration parameters and test-
program output.

This chapter briefly explains fundamental concepts for LibX, and also includes simple exercises
that illustrate each concept. These examples are identified by the Try It! heading.

Commands you enter are shown in bold courier type—for example, set_capture $card1.

All the examples in this chapter were run on a SmartBits 200 with four ML-7710 SmartMetrics
SmartCards connected to a Windows 95 PC.

System Requirements
LibX requires Tcl version 8.0 or higher, because it makes use of capabilities such as namespaces
that were introduced with Tcl 8.0. LibX was introduced as part of the Programming Library
sample code with the 3.07 release and has been formally tested only against that release.

Cards Supported
The current release of LibX focuses primarily on Ethernet cards in SmartMetrics mode. However,
many of the functions described here work across a range of card types.

LibX Components
LibX consists of five files:

� loadx.tcl A Tcl script that loads the LibX components.

� libx.tcl Core LibX commands and definitions.

� l3x.tcl Layer 3 / SmartMetrics stream commands.

� unloadx.tcl A Tcl script that unloads the LibX components.

� readme.doc An online version of the information in this chapter.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide86

Example 1 – Loading LibX with loadx.tcl
Before installing LibX you must start the Tcl Shell and source et1000.tcl to install the Netcom
Systems programming library.

Try It! – Load LibX

� Start the Tcl Shell and source et1000.tcl.

� cd to the directory holding the LibX files.

� Enter source loadx.tcl. If the command succeeds the message LibX loaded will be
displayed as shown below.

How Does It Work?
After a series of checks, loadx.tcl sources the component files libx.tcl and l3x.tcl, then imports only
the procedure names from each into the global namespace.

Load Problems
If the message was not displayed, there was a problem installing LibX. Possible error messages
include:

ERROR libx requires Tcl version 8.0 or higher

You are using a version of Tcl older than 8.0. You must upgrade before using LibX.

Files libx.tcl and/or l3x.tcl were not found

The component files are not in the local directory. Check the current directory (using pwd) and
be sure it is the directory that contains the LibX files.

Can’t import command “check_link”: already exists

There is a command in the global namespace that has the same name as one of the LibX
commands. You have to remove or rename the existing command before you can load LibX.
This is a safety feature of LibX that prevents it from silently replacing a command or
procedure that already exists.

To remove a conflict of this type, use the Tcl rename command. For example, to rename the
procedure check_link as check_link.org, use rename check_link check_link.org. The
sequence is shown below.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 87

Listing Commands
LibX adds a series of new commands to the Tcl environment.

Before starting, you could check for all the commands that start with set, show, or check as
follows:

The only command above is the Tcl set command.

After installing LibX, if we repeat the same command sequence, we get:

These new commands are LibX.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide88

Command Format

All LibX commands have the same format:

command root => one of: set_ (or) show_ (or) check_

The command root is appended to the appropriate action, such as:

set_streamip Sets up IP data streams on the target card.s

set_link Connects to the SmartBits chassis.

set_capture Sets up and starts a capture on the target card.

show_stream Shows the streams currently established on the target card.

For simplicity and consistency, all LibX commands have the underscore character
(_) only following the command root and nowhere else. Commands are always
lower-case and always singular, never plural.

See the summary table at the end of this chapter for a complete list of the currently defined LibX
commands.

Card Numbering Conventions
Some LibX commands, such as set_link, have no arguments. Most commands, however, have at
least the ID of target SmartCard.

The Programming Library identifies a card’s position in the chassis or chassis stack by the Hub
Slot Port triple. This numbering system is zero-based, so the first card in the first chassis is
identified as Hub Slot Port 0 0 0.

LibX simplifies this by defining each potential chassis position with a card number. For example,
the first card in the first chassis (Hub Slot Port 0 0 0) is defined as card1.

You can see how card1 is defined using the puts command.

Note that the {0 0 0} is not the same as 0 0 0. The LibX commands expect a list to identify a card,
not individual numbers. Using lists to reference cards rather than the Hub Slot Port triple allows us
to expand the concept of groups.

Example To set capture on the first card in the first chassis, you would enter:

set_capture $card1

Since the LibX commands accept a list as an argument, you can create a group as a list of lists and
pass the group list to the LibX command exactly as you would a single card.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 89

Currently LibX does not include a set_group command; you have to create your own. The usage is
conceptually the same as to define a single card. For example, to set up a group called txgroup
with cards 1, 3, 4, and 12 as members, then start a capture on all group members, you would use:

set txgroup [list $card1 $card3 $card4 $card12]
set_capture $txgroup

This will set capture on card 1, 3, 4, and 12. (Although the library has group commands for many
functions, capture is not one of them.)

In cases where the parent library does not have a group capability (such as setting a capture), LibX
will create an appropriate loop mechanism, usually a Tcl foreach command, to achieve this
purpose. In cases where the parent library already provides a group command, LibX will convert
the card list into a SmartLib group, then execute the appropriate group command.

Example 2 – set_default and set_link
LibX has a set_default procedure that sets the card to a predefined base state. The base state is
approximately the base state established by the SmartWindow application when you select
File>New.

This is different from the default state established on power-up or by using the library
HTResetPort $RESET_FULL command. For example, a power-up or ResetPort will set the
background pattern for an Ethernet card to all zero. SmartWindow and set_default create a basic
Ethernet frame. For example, for card 2 it will set the destination MAC address to FF FF FF FF FF
FF and the source MAC address to 00 00 00 00 00 02.

With the power-on default of all zero, you generally will not be able to send packets through a
switch, since almost any switch will block an all-zero packet. With the SmartWindow or
set_default packet, in contrast, the packets will pass.

Try It! – set_default

� Set up two SmartCards in slots 1 and 2.

� Power on the chassis.

� Start the Tcl Shell and source et1000.tcl.

� Set card 1 to the default state with set_default $card1.

Normally, you would not be able to send a command to a SmartBits chassis, since you didn’t link.
Attempting to send a command before linking would produce an error.

LibX always checks the system’s state before executing. If you are not linked, it will prompt for a
serial port or Ethernet address and link before executing the command, as shown below.

� When prompted, enter the COM port number to connect via serial connection, or enter E to
select an Ethernet link. If linking via Ethernet, enter the IP address and TCP port number.
After the link is complete (as indicated by the Ethernet linked message), the card type is
displayed by the set_default procedure.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide90

How Does It Work?

If you look at the set_default procedure (in libx.tcl), you will see that it starts as follows:

proc set_default { {group} } {
check_link

The set_default procedure has one argument, group, which we have seen is the list defining the
card—in this case, $card1. The first step is to call the procedure check_link, which checks the
link state. If it is not linked, it calls a second procedure, set_link, which actually sets up the link.

You may want to change the default Ethernet address in set_link. The easiest way is to open
libx.tcl in a programming editor and search for the line:

set IPADDRESS "192.168.100.10"

Change it to the desired address. Reload LibX and the new default will be the value you entered.

The set_default procedure identifies the target card using HTGetCardModel. Based upon the
name returned it runs the default setting procedure appropriate to the card. A part of the
set_default procedure is shown below:

set cardname ""
LIBCMD HTGetCardModel cardname $H $S $P
switch $cardname {

SE-6205 -
SC-6305 -
ST-6405 -
ST-6410 {puts "L2 10Mb Ethernet"
set_ethernet $H $S $P}
SX-7205 -
SX-7210 –

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 91

Example 3 – Transmit and Count
Three commands control transmission in LibX:

� run Starts transmission on the target card.

� stop Stops transmission on the target card.

� burst Sends a burst from the target card.

Transmit

Try It! – Run and Stop

� Ensure the Tcl Shell is started and the library is loaded.

� Connect card 1 and card 2 either back to back with a crossover cable or through a device.

� Start card 1 transmitting with run $card1. The TX LED will light on card 1 and the RX LED
will light on card 2.

� Stop card 1 with stop $card1. The LEDs will go out.

How Does It Work?
The transmit procedures are some of the simplest in LibX. Here is the run procedure in its entirety:

proc run {group} {
check_link
list2group $group
LIBCMD HGStart

}

Here is what the procedure does:

Command / Argument Description

run Procedure name.

group The only argument: a card or a group of cards.

check_link Checks for the link (as described above).

list2group $group Calls an internal procedure that converts the group list into a
SmartBits group.

HGStart This group command starts the group transmitting.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide92

Counters
Two LibX procedures give control over the card counters:

� set_count Clears the on card counters.

� show_count Displays the current card counter data.

NOTE SmartBits counters are always enabled. At any time, you can retrieve the
counter data, and the data will show all the counts since the counters were last reset or
since the chassis was powered on.

Try It! – Counters

After ensuring the system is ready to send commands, do the following:

� Read the counter data on card 2 by entering show_count $card2. The counter data from card 2
will be displayed as shown. Here, card 2 has received a little over four million packets but
hasn’t transmitted anything.

� Clear the counters on card 2 by entering set_count $card2. Now use show_count to display
the counter data again showing all the counts have been reset to zero.

� Start card 1 transmitting using the run command. While the card is still transmitting, display
the counts on card 2 with show_count.

� The show_count display will now show the packets received (Events) plus the packets-per-
second rate (Rates).

� Leave card 1 transmitting. Show the counter data from card 1 this time, using show_count.
How is the counter data from card 1 different?

Answer: Card 1 will show transmitted packets and no received packets. Card 2 shows received
packets and no transmitted packets.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 93

� While card 1 is still transmitting, start card2 transmitting using the run command. Display the
counter data for both cards. If the cards are in half-duplex mode, you will now see the
collision and undersize counts increasing as shown. You may or may not see a trigger count
depending on what state the background on the card is in.

Remember! Counter Rates are only displayed while transmission is in progress. If you stop the
transmission, the rates are always zero.

Troubleshooting Tip: Sometimes you may have a Tcl script that seems to be transmitting and
receiving (the TX and RX LEDs are lit), but the received packet counts in your program are
always zero. Load LibX and use set_count to zero the counters on the receiving card. Run the
problem program. Then use show_count to display the counters.

If the program has set the packet length to be greater that the maximum length or less than the
minimum legal length, the packets will be shown as undersize or oversize, not received packets. If
the transmit card was set to transmit CRC errors, the packets will be shown under CRC errors, etc.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide94

Procedure Defaults
There are optional defaults on many LibX procedures. The summary table at the end of this
chapter shows the syntax of all LibX commands.

The burst command is shown as:

burst GROUP <burst size 100>

The command name is burst. As we have seen, the GROUP argument is the target card entered as
$card1 or $card2, etc. The third argument in angle brackets, here burst size, is an optional
argument. If you enter:

burst $card1

…card 1 will transmit 100 packets. The default value of 100 is used.

If you enter:

burst $card1 10000

…card1 will transmit 10000 packets. The value 10000 overrides the default value.

If you look at the first line of the burst procedure in libx.tcl, it looks like this:

proc burst { {group} {burst_size 100} } {

The argument burst_size and the default value 100 are enclosed in curly braces. Arguments that
are not optional, such as group, do not have a default value. If you call burst without the group
argument, you will get an error.

Try It! – Procedure Defaults

� Clear the counters on both cards.

� Send a 100-packet burst using the default value.

� Display the counters to verify that 100 packets were sent.

� Send a 5000-packet burst by specifying the burst count.

� Display the counter data to verify that 5000 packets were sent this time.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 95

Example 4 – set_capture / show_capture
Counters give you a rough idea of the packets transmitted and received, but in many cases you will
want to capture and view the packet data. This is especially true if you are setting up a program
and want to be sure of the packets you think you are sending.

The LibX capture commands will work on all capture-capable cards, including the SX-7210/7410,
L3-6710, ML-7710, and Gigabit cards.

set_capture
Unlike counters, which are “running” all the time, capture must be started first. There are varying
options for each card capture type. The LibX capture procedures set them all the same:

• Capture all packets

• Capture complete packets

• Capture as much as possible.

Accordingly, the usage is the same for all cards: set_capture GROUP.

show_capture
This command stops the currently running capture and displays the specified number of packets,
formatted in the traditional 16-bytes-per-line hex dump.

Checking the syntax in the summary table (end of chapter), you will find:

show_capture GROUP <NUM> <output>

—where NUM is the number of packets to display (default is 5), and output is an optional output
file. All LibX show commands have the option of redirecting the output to a file rather than to the
display.

Writing Output to a File
If you look at the first line of the show_capture procedure, you will see:

proc show_capture { {group} {CAP_COUNT 5} {output stdout} } {

All the puts statements in the procedure specify $output as the output target. For example:

puts $output "No packets captured on card [expr $S + 1]"

Since output is defaulted to stdout (the display), if you don’t specify a value for output, the output
goes to the screen (as always). If you do want the output redirected, the calling program opens a
file and passes in the handle as the argument to output. Now all puts commands will send the
output to the file. To be explicit: If you wanted to send the first 100 packets captured to a file
named capture.log, you would use a sequence like this:

set fileID [open capture.log a]
set_capture $card2
run $card1
after 1000
show_capture $card2 100 $fileID

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide96

Try It! – set_capture / show_capture

� Ensure the system is ready for LibX commands.

� Connect card 1 and card 2 back to back with a crossover cable and ensure the cards are
linked.

� Start a capture on card 2 with set_capture $card2.

� Start transmitting from card1.

� Stop and display the capture on card 2 with show_capture $card2.

Notice the packet contents are not all zero, as they are on power up. The source and destination
MAC addresses were set by the set_default procedure. The last four non-zero bytes are the packet
CRC.

If you request a larger number to display than are in the capture buffer, the procedure will adjust
the number to display to the actual number in the capture buffer.

Capture Problems
It seems obvious that if you want to capture the packets transmitted from card 1, you should start
the capture on another card (and not on card 1), but this is a common mistake.

By default, SmartMetrics cards do not capture ARP packets. The L3-6710 card has never done
this, because it doesn’t have sufficient processing power to capture and respond to ARPs at the
same time. The ML-7710 card has enough processing power (since it has two separate processors)
and now has the capability in firmware, but the function is not yet part of the Programming
Library.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 97

Example 5 – set_mii / show_mii
Two LibX procedures read and write the MII registers on 10/100 cards. These procedures will
work on any NetcomSystems 10/100 Ethernet card (including the SX-7405, SX-7205, SX-7410,
SX-7210, and ML-7710).

MII Overview
Manipulating the values in the MII registers controls the speed and duplex mode of the FastCard.
We will discuss the first six registers:

• Register 0 Control register (READ/WRITE). Controls the configuration of the local PHY or
physical interface.

• Register 1 Status register (READ ONLY). Shows the status of the local PHY.

• Register 2 and 3 ID registers (READ ONLY). Shows the make and model of the PHY.

• Register 4 Advertisement (READ/WRITE). Sets the speed and duplex modes we will
accept during the autonegotiation process.

• Register 5 Link Partner (READ ONLY). Sets the speed and duplex mode the device on the
other end of the link is willing to accept.

Essentially, there are two ways to set the speed and duplex mode on a device.

1. Disable autonegotiation by clearing the Enable Autonegotiation bit in the Control Register,
then forcing the speed and duplex mode by setting the corresponding bits on the Control
Register.

2. Enable autonegotiation by setting the Enable Autonegotiation bit in the Control Register. The
link speed and duplex mode will then be negotiatied by the two devices on the link. The
outcome will be the highest common mode on Register 4 (what we are advertising) and
Register 5 (what the other side is advertising).

The Control Register
The Control Register is where we enable and disable autonegotiation, restart autonegotiation, and
where, if autonegotiation is disabled, we set the speed and duplex mode for the local device.

The bit position identification for the MII Control Register is shown in the SmartWindow MII
window (see below). The most significant bits are as follows:

Control Register – Most Significant Bits

Bit Description

12 Enables and disables autonegotiation.

9 Restarts autonegotiation.

13 Sets the speed for the local device if bit 12 is cleared (autonegotiation disabled).

8 Sets the duplex mode for the local device if bit 12 is cleared.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide98

The Status Register
The bit position identification for the MII Status Register also is shown in the SmartWindow MII
window (see below). The most significant bits are as follows:

Status Register – Most Significant Bits

Bit Description

11 – 14 Modes supported by this PHY.

5 Autonegotiation Complete. Indicates autonegotiation cycle is complete.

3 Indicates this PHY is Autonegotiation capable.

2 Indicates the link is up.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 99

Try It! – set_mii / show_mii

� Ensure the system is ready to accept LibX commands (shell started, library loaded, etc).

� Enter show_mii $card1. The current state of the first 6 MII registers is displayed, as shown
below:

Q. The current value of the Control Register is 0x3100. What does this indicate?

A. The bits for 100Mb (0x2000), Enable Autonegotiation (0x1000), and Full Duplex Mode
(0x0100) are set.

Q. Does this setting mean the device is linked at 100Mb Full Duplex Mode?

A. No. The speed and duplex settings in the Control Register have meaning only if Autonegotiation
is disabled. When Autonegotiation is enabled in the Control Register, the speed and duplex mode
are determined by negotiation between the two devices on the link.

Q. What value would we need to write as the Control Word to force the local device to 10Mb, Half
Duplex

A. 0x0000. This would clear the 100Mb and Full Duplex bits and Disable Autonegotiation

Let’s try it. First look at the summary table for the syntax of the set_mii command. It is shown as:

set_mii GROUP <WORD> <REG>

We should be pretty familiar with the command GROUP part of a LibX command by now. WORD
is the control word we want to write to the register, and REG is the number of the register we want
to write to.

So to send the control word 0x0000 to register 0, we would use set_mii $card1 0x0000 0

� Use the set_mii command to force card1 to 10Mb Half Duplex.

� Use show_mii to display the register settings.

The result should be as shown below. This will also probably drop the link unless the other side
happens to be at 10Mb Half Duplex. If you look at the bit pattern of the status register, you will see
the Link bit is no longer set.

� Enable Autonegotiation and force an autonegotiation by writing 0x1200 to the control register
(0x1000 = Enable Autonegotiation, 0X0200 = Restart Autonegotiation).

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide100

The cards should relink.

MII Write Problems
Note that the control word is formatted with a leading 0x. This indicates the value is in hex. If you
do not use the leading 0x, the value you enter will be interpreted as decimal, probably not what you
intended. When you read it back with show_mii, it will be displayed in hex, which might leave
you wondering “What happened?” Now you know.

Not all fields on the READ/WRITE registers on all transceivers are writeable. If you send a 7 you
may read back a 5 (assuming the 2 bit is not writeable).

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 101

Example 6 – set_l3 / show_l3
The set_l3 / show_l3 commands set, configure, and display the Layer 3 settings for a target
SmartMetrics card.

These settings set the MAC address and IP address of the card stack, specify the default gateway,
and configure, enable, or disable background packet generation (PING, RIP, and ICMP).

set_l3
The set_l3 LibX function will prompt for the most significant Layer 3 settings. You enter the
parameters when prompted and the card configuration is set.

Try It! – set_l3

� Ensure the system is set to receive LibX commands.

� Run the set_l3 procedure for card1 by entering set_l3 $card1.

� Enter configuration values when prompted, as shown below.

In the example above, we set the following values:

• Default gateway address (the IP address of the router port you are connected to).

• Card stack IP address (normally in the same subnet as the router port).

• IP address of the PING target (if PINGs were enabled this would be the address we would be
PING-ing for).

• Control word.

Bits 2 and 4 enable and disable background packet generation. Bit 1 will cause the card to replay
to ALL ARPs on the network and should never be set on a live network.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide102

show_l3
The companion command is show_l3. This command will display the current setting of the most
significant L3 settings on the target card.

Try It! – show_l3

� To display the Layer 3 settings for card 1, enter show_l3 $card1.

The Layer 3 settings are displayed with formatting as shown below. Note that the user was not
prompted by set_l3 for some fields displayed here, such as Netmask and Card MAC. If necessary,
the program can be modified by the end user to prompt for fields specific to his/her own
requirements.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 103

Example 7 – set_streamxx / show_stream
Streams are the core of the SmartMetrics cards. They allow you to set up over 1000 different VTEs
or streams per card, with control over the contents of every protocol header field. The trick is to set
up all those streams without making a mistake, such as having the same IP address for more than
one MAC address, duplicating IP addresses, or setting the wrong streams to the wrong gateway.

set_streamip
The LibX set_stream commands automate the stream creation process and will usually allow you
to set up streams without duplications or mismatches.

There are three stream-creation commands: set_streamip, set_streamudp, and set_streamipx,
used to create groups of IP, UDP, or IPX packets, respectively.

If we look at summary table for the syntax of the set_streamip command, we see:

set_streamip GRP1 GRP2 <NUM 10> <sourceIP> <destIP>

The arguments are as follows:

Argument Description

GRP1 Transmitting card or group of cards

GRP2 Receiving card or group of cards.

NUM Number of streams to create.

sourceIP Source IP address of the first stream.

destIP Destination IP address of the first stream.

Let’s look at the default case first. If we enter set_streamip $card1 $card2, we will set up ten
streams on card1. The stream creation commands require two GROUP or card arguments, because
we use the card numbers to generate unique stream numbers.

The default pattern for IP addresses is 10.X.1.10. When the streams are created, the X is replaced
with the card number. So in our example, if we are transmitting from card 1 to card 2, the source
IP would be 10.1.1.10 and the destination IP would be 10.2.1.10.

The card number also replaces the third byte of the MAC address. So the source MAC address for
the first stream created on card 2 would be 00 00 00 02 00 01.

Each successive stream created increments the LSB of both MAC address and the least significant
octet of both IP addresses.

The MAC addresses and IP addresses for the ten streams created (card1 to card2) would be as
shown in the table below.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide104

Stream # Source IP Source MAC Destination IP Destination MAC

1 10.1.1.10 00 00 00 01 00 01 10.2.1.10 00 00 00 02 00 01

2 10.1.1.11 00 00 00 01 00 02 10.2.1.11 00 00 00 02 00 02

3 10.1.1.12 00 00 00 01 00 03 10.2.1.12 00 00 00 02 00 03

4 10.1.1.13 00 00 00 01 00 04 10.2.1.13 00 00 00 02 00 04

5 10.1.1.14 00 00 00 01 00 05 10.2.1.14 00 00 00 02 00 05

6 10.1.1.15 00 00 00 01 00 06 10.2.1.15 00 00 00 02 00 06

7 10.1.1.16 00 00 00 01 00 07 10.2.1.16 00 00 00 02 00 07

8 10.1.1.17 00 00 00 01 00 08 10.2.1.17 00 00 00 02 00 08

9 10.1.1.18 00 00 00 01 00 09 10.2.1.18 00 00 00 02 00 09

10 10.1.1.19 00 00 00 01 00 10 10.2.1.19 00 00 00 02 00 10

To create a second set of matching streams on card 2, you would enter set_streamip $card2
$card1

Try It! – set_streamip

� Ensure the system is ready for LibX commands.

� Create the defautl 10 streams on card 1 with set_streamip $card1 $card2.

� Create a matching set of streams on card 2 with set_streamip $card2 $card1.

show_stream
Now that you have created the streams, how can you check them? You could start a capture on one
card and transmit from the other and view the captured packets, but decoding raw hex dumps can
be tedious. LibX has a command, show_stream, that will display the protocol data on the target
card, formatted to make it easier to read.

The syntax (from the summary table) is:

show_stream GROUP <NUM 5> <output>

So by default, it will display the protocol data for the first 5 streams. Like all show commands, the
output can be redirected to a file (see page 95).

Try It! – show_stream

� After you have created the streams on card 1 and 2 as outlined on the previous page, display
the protocol data by entering show_stream $card1.

Notice the MAC and IP addresses substitute the card numbers at the places explained previously.
Notice also the frame length and ARP status for this stream is displayed below the IP addresses.

� Display the protocol data for card 2 using the show_stream command. Note again how the
default-addressing scheme replaces the indicated values with the card number.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 105

Adding Additional Streams and Removing Streams
To add additional streams, simply run the desired stream creation command again. The set_stream
commands will append new streams to those already on the card.

If you want to remove all the streams on the card you can:

� Use a set_stream command passing zero as the number of streams—for example,
set_streamip $card1 $card2 0.

� Use the LibX set_default procedure. The default for SmartMetrics cards is zero streams.

� Use the set_l2 LibX command (covered in the next section).

� Use the library HTResetPort command (a reset erases all streams).

Non-default IP Addresses
If you do not want the default IP addressing scheme, you can pass in a new IP address. The syntax
of the set_stream command is:

set_streamip GRP1 GRP2 <NUM 10> <sourceIP> <destIP>

To set up a group of 10 streams starting with 192.168.X.10 (where X will be replaced with the
card number) transmitting to a group of streams starting with 13.X.27.20, you would enter
set_streamip $card1 $card2 10 192.168.X.10 13.X.27.20.

Note that if you want to override a default value, you have to set all optional values to the left of
that value. In this case for example, we have to explicitly pass in the NUM value of 10, even
though that is the default value, if we want to change the IP addresses.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide106

Many to One and One to Many
You can take advantage of LibX’s ability to accept groups as arguments to specify test setups of
one to many, many to one, or many to many.

As covered previously, it is possible to set a group of cards using the form:

set RxGroup [list $card2 $card3 $card4]

This creates a virtual group of three cards that can be passed into any LibX command. For
example, after creating the RxGroup we could start capture on all three by entering set_capture
$RxGroup.

We can use the same capability to do many-to-one or one-to-many tests.

For example, set_streamudp $card1 $RxGroup will set up 30 streams on card 1, 10 addressed
for card 2, 10 addressed for card 3, and 10 addressed for card 4.

Example 8 – Other Stream Commands
There are two additional stream commands to know:

� set_l2 Displays the number of streams on the card and gives the user the opportunity to
erase the streams and switch to layer 2 (Traditional) mode.

� set_arp Sends ARP requests from all active streams on the card.

set_l2
Erasing all streams puts the card in Layer 2 (Traditional or L2) mode. The syntax is set_l2
GROUP.

set_arp
Sends ARP requests from all active streams. Remember that the show_stream command also
displays ARP status. You can use that to check that the ARP cycles are complete. The syntax is
set_arp GROUP

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide 107

Summary of LibX Procedures
Procedure Arguments Description

run GROUP Starts card transmitting (continuous mode).

stop GROUP Stops transmitting.

burst GROUP <burst size 100> Sends a burst of packets (restores to continuous mode
on exit).

set_link – Checks for library file installation and current link. If not
linked, prompts for COM port or Ethernet address.

check_link – Checks for link. Calls set_link if not linked.

set_count GROUP Resets counters with HTClearPort.

show_count GROUP <output> Displays standard counter data. Output option allows file
handle to be used as output target (write to a file rather
than stdout).

set_capture GROUP Resets counters to capture all. Works on Fast Ethernet
and L3 cards.

show_capture GROUP <NUM> <output> Displays number of packets set by NUM. Default is 5
packets. Works with both L3 and Fast Ethernet cards.
Output option same as for show_count.

set_mii GROUP <WORD> <REG> Sets register REG with the value of WORD. Defaults are
0 and 0x0000.

show_mii GROUP <output> Shows current contents of first 5 MII registers. Output
option same as for show_count.

check_cardlink CARD Checks the card’s current link state. Returns 1 if the link
is up, –1 if the link is down.

set_streamtcp GRP1 GRP2 <NUM 10>
<sourceIP> <destIP>

Sets up NUM TCP streams on the card(s) in the GRP1
list (default 10). It uses the source and destination
CardList Elements to generate the streams where the IP
addresses are 10.x.1.10 (X = number of card) and MAC
addresses of 00 00 00 XX 00 01 (XX = card number).

set_default GROUP Sets target card to reasonable default values. Works on
Fast Ethernet, L3, Gigabit, and ATM cards. Defaults are
generally those of SmartWindow.

set_streamip GRP1 GRP2 <NUM 10> Similar to set_streamtcp above.

set_streamudp GRP1 GRP2 <NUM 10> Similar to set_streamtcp above.

set_streamipx GRP1 GRP2 <NUM 10> Similar to above but uses a similar scheme to generate
Host and Network numbers.

show_stream GROUP <NUM 5> <output> Shows streams on the target card. Breaks out
fundamental information such as protocol, source and
destination IP addresses, source and destination MAC
addresses, and length. Shows raw data dump under
protocol breakout. Output option same as show_count.

set_l3 GROUP Interactive utility for configuring L3 parameters. Prompts
user for gateway, SmartCard, and PING destination IP
addresses and Control word.

show_l3 GROUP <output> Shows L3 configuration. Output options same as for
show_count.

set_l2 GROUP Displays the number of transmitting streams on target
card and allows the user to remove them, setting the
card in L2 mode.

Chapter 11
Using LibX for Simplified Library Control

SmartLib User Guide108

SmartLib User Guide 109

Chapter 12:
Function and Structure Reference

This chapter describes the SmartLib Original Functions in alphabetical order.

NOTE Certain functions require a long time to execute. This is particularly true of
the VFD and Capture-related functions when they are passing large quantities of data.

Function Prefixes: ET, HT, HG, NS
Function prefixes identify the related system hardware, as follows:

• Functions prefixed with ET apply to SmartBits chassis (originally, to the ET-1000).

• Functions prefixed with HT apply to a single port. These functions require a Hub/Slot/Port
triple in the parameter list.

• Functions prefixed with HG operate on a group of ports, as defined in a string passed to the
HGSetGroup(PortIdGroup) command. A port group can be maintained and modified by using
the following commands:

� int HGAddtoGroup(iHub,iSlot,iPort)

� int HGRemoveFromGroup()

� int HGRemovePortIdFromGroup()

� int HGIsPortInGroup()

� int HGIsHubSlotPortInGroup()

� int HGGetGroupCount()

• Functions prefixed with NS can communicate with a SmartBits controller or perform a general
action for SmartCards or modules, such as create a frame template.

See the detailed command descriptions that follow.

Data Structures
When an Original Function uses a data structure, the structure is described here just following the
function. If a data structure is used by different functions, it is simply repeated for each function
and so may appear more than once in this guide.

NOTE For complete information on the structures used by the SetStructure and
the GetStructure commands, refer to the Message Functions manual.

Chapter 12
Function and Structure Reference

SmartLib User Guide110

Usage
Some data structures require additional memory allocation. In most cases, you define the structure
at the beginning of your function. For example:

int SetETCollision(void)
{

CollisionStructure Collide; //Collision structure
Collide.Offset = 0x20;
Collide.Duration = 0x36;
Collide.Count = 14486;
Collide.Mode = CORP_A;
ETCollision(&Collide); //Set it so
}

Some library functions automatically put information into the structures you declare. In these
cases, declare the functions and then call the appropriate library routine. For example:

int GetETCollision(void)
{
CollisionStructure Collide; //defines a structure
ETGetCollision(&Collide); //which the library fills
printf(“Collision Offset is: %d\n”,Collide.Offset);

printf(“Collision Duration is: %d\n”,Collide.Duration);
}

Some library functions require you to put information into the declared data structures before
calling them. If this is not done, the library might produce unpredictable results. For example:

int BadSetETCollision(void)
{
CollisionStructure Collide; //defines a structure, but

//contents unspecified
ETCollision(&Collide); //call with unintended

//results
}

Chapter 12
Function and Structure Reference

SmartLib User Guide 111

ETEnableBackgroundProcessing
Description Allows enhanced responsiveness of foreground applications.

Syntax int ETEnableBackgroundProcessing(int bFlag)

Parameters bFlag int 0 to disallow, 1 to allow.

Return Value The return value is the previous state of BackgroundProcessing.

Comments Use this function with extreme care. All commands to the Programming library are
executed completely then returned. ETEnableBackgroundProcessing allows for the
same process or other processes to proceed while a Programming library function is
being executed. A guard flag is enabled around reentrancy in the library, but you could
end up in “deadly-embrace” situations. If this function is enabled, while a command in
the Programming Library is executing, you are performing operations on the stack. So,
do not use WM_TIMER messages, or button press messages to call Programming
Library functions if this function is enabled. The code executed when background
processing is enabled is below. Note the PeekMessage loop does not process
WM_USER+n messages.

if (bAllowIdleProcessing)

{

bIdling = TRUE;

while(PeekMessage(&Msg,NULL,WM_NULL,WM_USER-1,PM_REMOVE))

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

}

bIdling = FALSE;

ETGetBaud
Description Obtain the current baud rate settings for the communications port.

Syntax long ETGetBaud(void)

Parameters None

Return Value The return value indicates the baud rate as a long value.

Comments None

ETGetController
Description Returns the current type of SMB controller.

Syntax int ETGetController(void)

Parameters None

Return Value 1 CONTROLLER_ET1000
2 CONTROLLER_SMB1000
3 CONTROLLER_SMB2000
4 CONTROLLER_SMB6000
5 CONTROLLER_SMB200
6 CONTROLLER_SMB600

Comments

Chapter 12
Function and Structure Reference

SmartLib User Guide112

ETGetFirmwareVersion
Description Retrieves the current SmartBits firmware version of the attached SmartBits. It is

expressed as an eight-character array with a terminating NULL character, which is
left in buffer. Buffer must have enough room for at least 9 characters.

Syntax int ETGetFirmwareVersion(char* Buffer)

Parameters Buffer char* Points to a memory location where the version information
is to be placed. NOTE: Buffer must be at least 9 characters
long.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if there was a failure. See Appendix B for error codes.

Comments The version is returned as a character string, not an integer.

ETGetHardwareVersion
Description Retrieves the current hardware version of the attached SmartBits. It is expressed as

an eight-character array with a terminating NULL character, which is left in Buffer.
Buffer must have enough room for at least 9 characters.

Syntax int ETGetHardwareVersion(char* Buffer)

Parameters Buffer char* Points to a memory location where the version information
is to be placed. NOTE: Buffer must be at least 9 characters
wide.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if there was a failure. See Appendix B for error codes.

Comments The version is returned as a character string, not an integer.

ETGetLibVersion
Description Used to retrieve the version information for the Programming Library currently in use

by the program making the call. The first string is a text description of the library. The
second string is the version number in ASCII.

Syntax int ETGetLibVersion(char* pszDescription, char* pszVersion)

Parameters pszDescription char* Points to a memory location where the library description is
to be placed. NOTE: Buffer must be at least 50 characters
wide.

pszVersion char* Points to a memory location where the version information
is to be placed. NOTE: Buffer must be at least 20 characters
wide.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if there was a failure. See Appendix B for error codes.

Comments The version is returned as a character string, not an integer.

Chapter 12
Function and Structure Reference

SmartLib User Guide 113

ETGetLinkFromIndex
Description Returns the SmartBits ComPort.

Syntax int ETGetLinkFromIndex(int iLink)

Parameters iLink int Specifies which SmartBits connection. A value of 1 means the
first SmartBits connection to the Programming Library.

Return Value This function returns the SmartBits ComPort which is associated with the specified
ETLink attempt. The return value is < 0 if there was a failure. See Appendix B for
error codes.

Comments See ETSetCurrentLink.

ETGetLinkStatus
Description Indicates the current status of the link between the PC and the attached SmartBits.

Syntax int ETGetLinkStatus(void)

Parameters None

Return Value Returns the identity of the COM port if the link is established. Returns a failure code if
the function failed. See Appendix B for error codes.

Comments Use this function to determine whether or not there is a communication link
established with an attached SmartBits. If the link has already been established and
then is abruptly broken (due to a physical break in the connecting device or cable),
this function will return a 0.

ETGetSerialNumber
Description Retrieves the current serial number of the attached SmartBits. It is expressed as an

eight-character array with a terminating NULL character, which is left in Buffer. Buffer
must have enough room for at least 9 characters.

Syntax int ETGetSerialNumber(char* Buffer)

Parameters Buffer char* Points to a memory location where the serial number is to
be placed. NOTE: Buffer must be at least 9 characters wide.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if there was a failure. See Appendix B for error codes.

Comments The serial number is returned as a character string, not an integer.

ETGetTotalLinks
Description Returns total SmartBits connections.

Syntax int ETGetTotalLinks(void)

Parameters None

Return Value This function returns the total SmartBits systems connected to Programming Library.
A value of 2 means there are two SmartBits connected.

Comments See ETSetCurrentLink.

Chapter 12
Function and Structure Reference

SmartLib User Guide114

ETIsBackgroundProcessing
Description Determines if the Programming Library is currently executing a function.

Syntax int ETIsBackgroundProcessing(void)

Parameters None

Return Value The return value is >0 if true, 0 if false. A failure code of less than zero is returned if
the function failed. See Appendix B for error codes.

Comments This returns the state of the guard flag used to control reentrancy in the Programming
Library.

ETLink
Description Forges a communication link between the PC and the attached SmartBits.

Syntax int ETLink(int ComPort)

Parameters ComPort int Determines the COM port to be used to run the remote link to
the attached SmartBits:

ETCOM1 Serial COM port 1

ETCOM2 Serial COM port 2

ETCOM3 Serial COM port 3

ETCOM4 Serial COM port 4

Any ComPort values outside this range are discarded and will
have no effect on the link status.

Return Value The return value is less than or equal to 0 if the function failed to establish a link with
the attached SmartBits.

Comments This function must execute successfully before any communication between the host
PC and the remote SmartBits can take place. While executing this function, the PC
will search for the baud rate at which the attached SmartBits responds. It may take a
while (up to 30 seconds) for this function to execute, as it must seek out and search
several baud rates before deciding whether or not the attached SmartBits is
responding correctly.

ETMake2DArray
Description Creates virtual two-dimensional arrays with the Tcl programming language.

Syntax int ETMake2DArray (char* pszArrayName, int iSizeFirstDim, int iSizeSecondDim)

Parameters pszArrayName char* A pointer to the name of the virtual array created with Tcl.
Use pszArrayName for any functions that require 2D arrays.

iSizeFirstDim int Specifies the number of elements in the first dimension of the
array.

iSizeSecondDim int Specifies the number of elements in the second dimension of
the array.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if this function failed to execute. See Appendix B for error
codes.

Comments This is a Tcl work-around, only found in ET1000.TCL.

This Tcl utility function can be used, for example, with HTCardModels where the first
array is MAX_HUBS and the second array is MAX_SLOTS.

For more information, see Tcl_tips.txt in your SmartLib installation.

Chapter 12
Function and Structure Reference

SmartLib User Guide 115

ETMake3DArray
Description Creates virtual three-dimensional arrays with the Tcl programming language.

Syntax int ETMake3DArray (char* pszArrayName, int iSizeFirstDim, int iSizeSecondDim, int
iSizeThirdDim)

Parameters pszArrayName char* A pointer to the name of the virtual array created with Tcl.
Use pszArrayName for any functions that require 3D arrays.

iSizeFirstDim int Specifies the number of elements in the first dimension of the
array.

iSizeSecondDim int Specifies the number of elements in the second dimension of
the array.

iSizeThirdDim int Specifies the number of elements in the third dimension of the
array.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if this function failed to execute. See Appendix B for error codes.

Comments This is a Tcl work-around, only found in ET1000.TCL.

This Tcl utility function can be used, for example, with HTFrame where the first array is
iHub, the second is iSlot, and the third is iPort.

For more information, see Tcl_tips.txt in your SmartLib installation.

ETSetBaud
Description Adjusts the baud rate of the SmartBits’s serial link.

Syntax int ETSetBaud(int Baud)

Parameters Baud int Determines the Baud rate at which the attached SmartBits
operates:

ETBAUD2400 2400 Baud

ETBAUD4800 4800 Baud

ETBAUD9600 9600 Baud

ETBAUD19200 19.2 kBaud

ETBAUD38400 38.4 kBaud

All other values are invalid and will have no effect on the attached
SmartBits.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Once the Baud rate of the attached SmartBits has been changed, it will no longer be
able to communicate with the PC. After executing this function, you should break and
re-establish the link using the ETUnLink and ETLink functions. (The ETLink function
automatically finds the Baud rate at which the attached SmartBits is currently
operating.) ADVICE: If problems occur while trying to link at a different baud rate,
place the SmartBits in the local mode by pressing its RESET switch. Then activate
mode A4 and SET the baud rate as appropriate.

Chapter 12
Function and Structure Reference

SmartLib User Guide116

ETSetCurrentLink
Description Specifies which SmartLib Link (SMB to PC) is the current Link.

If you have multiple Links, use this command before sending ET controller-specific
commands such as ETGetHardwareVersion. You need not use this command before
sending SmartCard-specific commands.

Syntax int ETSetCurrentLink(int ComPort)

Parameters ComPort int Specified the attached SmartBits with ComPort to be used in
SmartLib for related ET commands:

ETCOM1 Serial COM port 1

ETCOM2 Serial COM port 2

ETCOM2 Serial COM port 3

ETCOM4 Serial COM port 4

Any ComPort values outside this range are discarded and will have
no effect on the link status.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Instead of changing ET related commands, to include another parameter to specify
which SmartBits system in the Programming Library functions in order to support
multiple SmartBits connections, use ETSetCurrentLink to specify “Current” SmartBits
for the related ET commands.

ETSetCurrentSockLink
Description Specify which SmartLib link (SMB to PC) is the current link.

If you have multiple Links, use this command before sending ET controller-specific
commands such as ETGetHardwareVersion. You need not use this command before
sending SmartCard-specific commands.

Syntax int ETSetCurrentSockLink(char* IPAddr)

Parameters IPAddr char* Specifies the IP address of the SMB controller you want to
send a command to.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments

Chapter 12
Function and Structure Reference

SmartLib User Guide 117

ETSetGPSDelay
Description Determines the actual start time communicated to a remote hub by HGRun and by

HGStart, HGStop, and HGStep when GPS is available. Calculations are based on the
estimated time to send a message to the remote hub.

The default delay used by HGRun, and HGStart, HGStop, and HGStep for GPS
synchronized starts is 20 seconds plus an additional 10 seconds for each hub. Use
this function to change the default start time if:
* There is not enough time for the remote host to receive the message. This can cause
the local hubs to start before the remote hubs receive the command.
* The default delay is unnecessarily long.

Syntax int ETSetGPSDelay(ulong ulSeconds)

Parameters ulSeconds ulong Determines the delay added to the current time so that local
and remote hubs can start synchronously.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command is only used by HGRun, HGStart, HGStop, and HGStep when GPS is
available.

ETSetTimeout
Description Determines how long SmartLib will wait for a response from the SMB controller before

timing out. The default timeout value is 5 seconds.

Syntax int ETSetTimeout(unsigned TimeOutValue)

Parameters TimeOutValue unsigned int Determines the time-out value, in milliseconds.

Range: 1 to 2,147,483,647 milliseconds (0x7FFFFFFF).

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Passing a value of 0 will set the timeout to approximately 24 days, effectively disabling
timeout for most purposes.

ETSocketLink
Description Used to connect to a SmartBits system over an IP socket connection.

Note: Use a serial port connection first to configure the SmartBits chassis IP address.

Syntax int ETSocketLink (char IPAddr, int iTCPPort)

Parameters szIPAddr char Specifies the IP address of the SmartBits chassis to which a
connection attempt should be made.

iTCPPort int TCP port number. The default value is 16385.

Return Value The return value is >= 0 if the function executed successfully. A failure code (less than
zero) is returned if the function failed. See Appendix B for error codes.

Comments Use the serial port interface to set or change the IP address of the SmartBits chassis.
To connect the PC to the chassis, use a terminal emulation program such as
HyperTerminal.

Once connected to SmartBits, enter the command ipaddr to view the current IP
address. Enter the command ipaddr<new_address> to set a new IP address. For
example, enter a command like the following:

ipaddr 129.186.145.5

Chapter 12
Function and Structure Reference

SmartLib User Guide118

ETUnLink
Description Causes the communication link between the PC and the attached SmartBits to be

broken. The allocated COM port will be freed up for other applications to use.

Syntax int ETUnLink(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments It is highly recommended that this function be performed as part of shutting down the
SmartBits application. This guarantees that DOS will recognize the allocated COM port
as having been freed from any application and is thus available. Also, the execution of
this function automatically puts the attached SmartBits in the manual mode.

HGAddtoGroup
Description Along with HGSetGroup, this command can be used to add individual hub/slot/port

cards to a group.

Syntax int HGAddtoGroup (int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Currently, this command should be used in Hub/Slot/Port ascending order. Example:
HGSetGroup(NULL);

HGAddtoGroup(0,0,0);

HGAddtoGroup(0,1,0);

This will add the first two cards in the first hub to a group.

HGAlign
Description Create alignment errors on the previously selected group. This function is valid for

SmartCards only.

Syntax int HGAlign(int iBits)

Parameters iBits int Sets the number of extra alignment bits to transmit.

Range: 0 to 7.

Setting this value to 0 disables generation of packets with
alignment bit errors.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 119

HGBurstCount
Description Sets the number of packets transmitted in a single burst from all ports associated with

the PortIdGroup defined by the HGSetGroup(PortIdGroup) command.

Syntax int HGBurstCount(long lVal)

Parameters lVal long Specifies the burst count.

Range: 1 to 16,777,215.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction does not cause a burst of packets to be sent. Use HGTransmitMode,
or HTTransmitMode to select a burst mode, and then use HGRun, HGStart, HGStep,
or HTRun to actually start the transmission of the burst.

HGBurstGap
Description Sets up the time gap between bursts of packets from all ports associated with the

PortIdGroup defined by the HGSetGroup(PortIdGroup) command.

Syntax int HGBurstGap(long lVal)

Parameters lVal long Specifies the inter-burst gap in tenths of a microsecond.

Range: 1 to 16 million.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction is only applied if HGTransmitMode, or HTTransmitMode has
selected one of the MULTI_BURST_MODE, or CONTINUOUS_BURST mode
selections. Use HGRun, HGStart, and HTRun to actually start the transmission of the
bursts.

HGBurstGapAndScale
Description Sets up the time gap between bursts of packets, at the given scale from all ports

associated with the PortIdGroup defined by the HGSetGroup(PortIdGroup) command.

Syntax int HGBurstGapAndScale(long lVal, int iScale)

Parameters lVal long Specifies the inter-burst gap value. Legal values range
anywhere from the lowest gap possible on the group being
addressed up to a maximum of 1.6 sec.

iScale int Specifies the scale of the gap value according to following:
NANO_SCALE = nanoseconds scale
MICRO_SCALE = microseconds scale
MILLI_SCALE = milliseconds scale

Possible values range from 1 to 1,600,000,000 nanoseconds for
NANO_SCALE; from 1 to 1,600,000 microseconds for
MICRO_SCALE; and from 1 to 1600 milliseconds for
MILLI_SCALE. Values outside this range return an error code.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction is only applied if HGTransmitMode, or HTTransmitMode has
selected one of the MULTI_BURST_MODE, or CONTINUOUS_BURST mode
selections. Use HGRun, HGStart, and HTRun to start the transmission of the bursts.

Chapter 12
Function and Structure Reference

SmartLib User Guide120

HGClearGroup
Description Ungroups a number of ports that were previously grouped together with the

HGSetGroup command.

Syntax int HGClearGroup(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Since there can only be one group defined at a time, HGClearGroup needs no
arguments.

HGClearPort
Description Clears internal counters from all ports associated with the PortIdGroup defined by the

previous HGSetGroup(PortIdGroup) command.

Syntax int HGClearPort(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This command is used on SmartCards. For Passive Hub cards, use the HGClear
command.

HGCollision
Description Determines the collision mode and count for the 100 Mbits Fast SmartCards.

Syntax int HGCollision(CollisionStructure* CStruct)

Parameters CStruct CollisionStructure* Holds information pertaining to the collision
mode (off, on), and count.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See the definition of CollisionStructure below. The offset and length fields are not
used for 100 Mbits SmartCard.

CollisionStructure
Parameter Description

unsigned Offset Specifies the offset, in bits, starting from the first bit of the preamble where the
collision is to take place. This value is only used when the Collision Mode is
COLLISION_ADJ, CORP_A or CORP_B. It is ignored when the Collision Mode is
COLLISION_LONG. The Offset value entered here also pertains to the collisions
produced on the SmartBits when it is attached to the ET-1000.

Range: 0 to 65535 (0x0000 to 0xFFFF).

unsigned uration Specifies the duration in bits that the collision is to be asserted. This value is used
only when the Collision Mode is COLLISION_ADJ, CORP_A or CORP_B. It is
ignored when the Collision Mode is COLLISION_LONG. Note that the Duration
value entered here also pertains to the collisions produced on the SmartBits when it
is attached to the ET-1000.

Range: 1 to 65535 (0x0000 to 0xFFFF). A duration of 0 is invalid.

Chapter 12
Function and Structure Reference

SmartLib User Guide 121

Parameter Description

int Count Specifies the number of consecutive collisions to produce (one in each packet)
before the collision goes inactive. A count of 0 essentially disables the collision
counting mechanism, thus producing continuous collisions of the specified type.
Note that the Duration value entered here also pertains to the collisions produced
on the SmartBits when it is attached to the ET-1000.

Range: 0 to 1024.

int Mode Specifies the collision mode.
COLLISION_OFF Collision Off
COLLISION_LONG Long Collision
COLLISION_ADJ Adjustable Collision (on transmission)
CORP_A Collision on receive packet, Port A
CORP_B Collision on receive packet, Port B

HGCollisionBackoffAggressiveness
Description Determines the wait factor for backing off from multiple collisions only on SmartCards in

a previously selected group.

Syntax int HGCollisionBackoffAggressiveness(unsigned int uiAggressiveness)

Parameters uiAggressiveness unsigned int Set the backoff factor. The length of time actually
delayed follows as powers of two using this factor.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGCRC
Description Create packets with CRC errors on the previously selected group. This function is valid

for SmartCards only.

Syntax int HGCRC(int iMode)

Parameters iMode int Set the error facility on or off. Valid flags: ET_ON and ET_OFF

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide122

HGDataLength
Description This command is used to specify the length of the data field in the packets being

transmitted by the SmartBits ports associated with the PortIdGroup defined by the
previous HGSetGroup(PortIdGroup) command. Applies only to SmartCards. A random
packet size can also be selected.

Syntax int HGDataLength(int iLength)

Parameters iLength int Specifies the length of the packets that are to be transmitted on
the addressed port. The length is specified in bytes, and it includes
everything between the preamble and the CRC. The actual
transmitted packet will be extended four bytes for the CRC. Length
can range from 1 to 8191. A Length of 0 will cause random packet
sizes to be transmitted.

Return Value he return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGDribble
Description Create dribble bit errors on the previously selected group. This function is valid for

SmartCards only.

Syntax int HGDribble(int iBits)

Parameters iBits int Sets the number of dribble bits to transmit. Valid range is 0 to
7. Setting this value to 0 disables generation of packets with
dribble bit errors.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGDuplexMode
Description Indicates whether to set full duplex or half duplex mode for all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command.

Syntax int HGDuplexMode(int iMode)

Parameters iMode int Sets the Duplex mode where iMode should be one of the
following:

FULLDUPLEX_MODE Full duplex mode on

HALFDUPLEX_MODE Half duplex mode on

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 123

HGFillPattern
Description Specifies the data pattern that is to be transmitted from all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command. Any VFD
data will overwrite this pattern.

Syntax int HGFillPattern(int iSize, int* piData)

Parameters iSize int Identifies the size, in bytes, of the fill pattern contained in the
Data array. Size may range from 60 to 2044. A value of 0 (zero)
will cause a random data pattern to be generated.

piData int* Points to the array which contains the data pattern to be
transmitted. A value of NULL will cause a random data pattern to
be generated.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGGap
Description Specifies the inter-packet gap that is to be transmitted from all ports associated with

the PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command. Also
allows random gaps to be transmitted.

Syntax int HGGap(long lPeriod)

Parameters lPeriod long On 10Mbit cards, this value equals the number of tenths of
microseconds between transmitted packets.

On 100Mbit cards, this value equals the number of tens of
nanoseconds between transmitted packets.

In either case, lPeriod may range from 10 (=1us) to 1,600,000. A
value of 0 (long) will cause a random gap to be generated. For
example, if lPeriod = 96, for 10Mbit cards, the Gap will be
96*0.1us = 9.6us, and for 100Mbit cards, the Gap will be 96*10ns
= 960ns. In both cases, the cards get the minimum legal
interpacket gap.

For TokenRing cards at 4Mbit, the minimum legal “Gap” is 250ns,
and for TokenRing cards at 16Mbits, the minimum legal “Gap” is
65ns.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide124

HGGapAndScale
Description Specifies the inter-packet gap that is to be transmitted on the addressed port. Also

allows random gaps to be transmitted. Applies only to SmartCards.

Syntax int HGGapAndScale(long lPeriod, int iScale)

Parameters lPeriod long Identifies the number of “scaled” units to be between
transmitted packets. A value of 0 (long) will cause a random gap to
be generated.

iScale int Determines the scale that the lPeriod parameter based on:
NANO_SCALE = nanoseconds scale
MICRO_SCALE = microseconds scale
MILLI_SCALE = milliseconds scale

Possible values range from 1 to 1,600,000,000 nanoseconds for
NANO_SCALE; from 1 to 1,600,000 microseconds for
MICRO_SCALE; and from 1 to 1600 milliseconds for
MILLI_SCALE. Values outside this range return an error code.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGGetCounters
Description Retrieves counters from all ports in the group defined by the previous

HGSetGroup/HGAddtoGroup command. This information is placed into the
HTCountStructures pointed to in the input argument.

Syntax int HGGetCounters(HTCountStructure* phtCountStruct)

Parameters phtCountStruct HTCountStructure* A pointer to the first element of an array of
counter structures in which count information is to be placed. See
the defintion of HTCountStructure below.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments It is assumed that the calling function has declared the HTCountStructure array and
reserved sufficient memory for it.

HGGetEnhancedCounters
Description Retrieves standard counters and card related counters from all ports in the group

defined by the previous HGSetGroup/HGAddtoGroup commands. This information is
placed into the EnhancedCountersStructure pointed to in the input argument. Applies
to SmartCards and TokenRing SmartCard.

NOTE: This command may not be used with Gigabit Ethernet SmartCards and
SmartModules.

Syntax int HGGetEnhancedCounters(EnhancedCountersStructure* pEnCounter)

Parameters pEnCounter EnhancedCountersStructure* A pointer to the first element of an
array of counter structures in which count information is to be
placed. See the description of EnhancedCountersStructure
below.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments It is assumed that the calling function has declared the EnhancedCountersStructure
array and reserved sufficient memory for it.

Chapter 12
Function and Structure Reference

SmartLib User Guide 125

EnhancedCountersStructure
Parameter Description

int iMode Counter mode control.
0 Set to Count
1 Set to Rate

int iPortType Card type is returned in this member variable.
CT_ACTIVE 10Mb Ethernet
CT_FASTX 10/100Mb Ethernet
CT_TOKENRING 4/16Mb TokenRing
CT_VG VG/AnyLan

unsigned long
ulMask1

Bit mask for the Standard counters. The Standard counter type can be any one, (or
a combination calculated by performing a bit-wise “or”) of the applicable constants
below:

SMB_STD_TXFRAMES Transmitted Packets
SMB_STD_TXBYTES Transmitted Bytes
SMB_STD_TXTRIGGER Transmitted Trigger Packets
SMB_STD_RXFRAMES Received Packets
SMB_STD_RXBYTES Received Bytes
SMB_STD_RXTRIGGER Received Trigger Packets
SMB_STD_ERR_CRC Checksum Packets
SMB_STD_ERR_ALIGN Alignment Packets
SMB_STD_ERR_UNDERSIZE Undersized Packets
SMB_STD_ERR_OVERSIZE Oversized Packets
SMB_STD_ERR_COLLISION Collision Packets

Get a combination of the above by “OR-ing” together criteria from the above list.

Example for ulMask1

EnhancedCountersStructure ECSTx;
int iErr = 0;
memset(&ECSTx, 0, sizeof(ECSTx));
ECSTx.ulMask2 = L3_ARP_REQ + L3_ARP_REPLIES;
iErr = HTGetEnhancedCounters(&ECSTx, TxHub, TxSlot, TxPort);
printf (msg, “ECSTx Arp Requests: %u\n”, CSTx.ulData[39]);
printf (msg, “ECSTx Arp Replies: %u\n”, CSTx.ulData[41]);

Parameter Description

unsigned long
ulMask2

Bit mask for the Additional counters on some SmartCards and SmartModules. The
Additional counter type can be any of the applicable constants below (or a
combination calculated by performing a bit-wise “OR”):

Token Ring SmartCard. The following are recognized in ulMask2:
TR_MASK Allowable possible bits.
TR_LATENCY Latency time in 100ns counts.
TR_TOKEN_RT Rotation time in microseconds.

Counters indicated by TR_MAC are
derived from Ring Error Monitor MAC
frames, others are from direct
counts. Consult the TR architectural
specification for the definition of
these counts.

TR_RXMAC Received MAC frames. Mac frames are
used to manage a ring.

TR_RXABORTFRAMES Abort Frames. These frames end with
an “Abort Delimiter” rather than the
normal “End Delimiter.” These are
frames that the transmitter stopped
sending before they were complete.

TR_LINEERRORS Line errors counter. Line errors
occur when the line ceases to have
signal for a designated length of

Chapter 12
Function and Structure Reference

SmartLib User Guide126

time. Typically this is caused by an
unplugged wire.

TR_BURSTERRORS Burst errors counter. Burst Errors
are when the line is disconnected for
a short time, typically less than 5
bit times.

TR_BADTOKEN Corrupted tokens. Bad Tokens are when
there is garbage instead of tokens
(which look like small frames).

TR_PURGEEVENTS Purge MAC frames detected. The
presence of “Purge” MAC frames occurs
just before the ring starts working
normally.

TR_BEACONEVENTS Beacon MAC frames detected. Beacons
are MAC frames used to determine if
the ring is complete. Stations send
them if they can’t establish a ring.

TR_CLAIMEVENTS Claim MAC frames detected. Claims are
MAC frames used to let stations bid
to throw and monitor the token.

TR_INSERTIONS Request initializations. Request
Initialization frames are MAC frames
sent as a station joins the ring.
They can be used to indicate how
often stations join the ring.

The MAC type error counts below are
taken from “Ring Error Monitor”
reporting frames. Stations keep track
of errors Internally. Periodically,
(or when the counters overflow), they
report the errors to the “Ring Error
Monitor.” For your convenience,
SmartLib tracks these errors. This
information, however, will not be as
complete at that from a program such
as “LAN Manager.”

For definitions of the errors below, see the Architectural Reference or standards
documents.

TR_MAC_LINEERRORS Isolating line error.
TR_MAC_INTERNALERRORS Internal error.
TR_MAC_BURSTERRORS Burst errors.
TR_MAC_ACERRORS AMP detects circulating frame.
TR_MAC_ABORTTX Abort delimiter detected.
TR_MAC_LOSTFRAME Incompletely stripped frame.
TR_MAC_RXCONGESTED Receiver congestion.
TR_MAC_FRAMECOPIED Possible duplicate address.
TR_MAC_FREQUENCYERROR Excessive jitter detected.
TR_MAC_TOKENERROR Circulating frames.
SMB_VG_MASK Allowable possible bits.

VG SmartCard. The following are recognized in ulMask2:
SMB_VG_INV_PKTMARK Invalid packet marker errors.
SMB_VG_ERR_PKT Errored packets received.
SMB_VG_TRANSTRAIN_PKT Transition into training.
SMB_VG_PRIO_PROM_PKT Priority promoted packets received or

transmitted.
L3_MASK Allowable possible bits.

Layer 3 SmartCards. The following are recognized in ulMask2:
L3_FRAMEERROR Framing errors. Framing Errors,

caused by dribbling, occur when the
total number of bits received by the
card is not a multiple of 8. On a 10
Mbps card, 1 to 7 additional bits are

Chapter 12
Function and Structure Reference

SmartLib User Guide 127

possible. On a 100 Mbps card, the
error is off by 4 bits.

L3_TX_RETRIES Number of transmit
collisions/retries.

L3_TX_EXCESSIVE Number of times a frame needed more
than 16 retries. (Available only for
L3-6705 and L3-6710.)

L3_TX_LATE Number of collisions that occurred
more than 64 bytes into a frame.
(Available only for L3-6705 and L3-
6710.)

L3_RX_TAGS Number of number of received frames
that have “signature” fields.

L3_TX_STACK Number of frames transmitted from the
SmartCard’s local stack.

L3_RX_STACK Number of Number of frames received
by the SmartCard’s local stack.

L3_ARP_REQ Number of ARP request frames
originating on the SmartCard.

L3_ARP_SEND Number of ARP reply frames
originating on the SmartCard.

L3_ARP_REPLIES Number of ARP request frames received
by the SmartCard.

L3_PINGREP_SENT Number of ICMP Ping reply frames sent
by the SmartCard.

L3_PINGREQ_SENT Number of ICMP Ping request frames
sent by the SmartCard.

L3_PINGREQ_RECV Number of ICMP Ping request frames
received by the SmartCard.

unsigned long
ulData[64]

Array of counters returned. ulMask1 and ulMask2 are bit masks that identify the 64
possible counters, with bit 0 of ulMask1 corresponding to ulData[0], bit 1 of
ulMask1 corresponding to ulData[1], bit 0 of ulMask2 corresponding to ulData[32]
and so on.

HGGetGroupCount
Description Returns the number of ports currently configured in the group.

Syntax int HGGetGroupCount(void)

Parameters None

Return Value Returns the number of ports currently configured in the group. The return value is >= 0
if the function executed successfully. A failure code of less than zero is returned if the
function failed. See Appendix B for error codes.

Comments

HGGetLEDs
Description Determine the state of the LEDs on ports in the currently defined group.

Syntax int HGGetLEDs(int* piLEDs)

Parameters piLEDs int* a pointer to an integer array of at least the number of cards in
the group size that receives the LED states of all SmartCards in
the current group.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Behavior of this function is undefined if the port group contains passive cards.

Chapter 12
Function and Structure Reference

SmartLib User Guide128

HGIsPortInGroup
Description Returns whether the specified port is currently configured in the group.

Syntax int HGIsPortInGroup(int iPortId)

Parameters iPortId int the counting ordinal ID of the port in the test bay whose
inclusion in the group is to be checked.

Return Value Returns a positive (non-zero) number if TRUE, zero if FALSE. The return value is >= 0
if the function executed successfully. A failure code of less than zero is returned if the
function failed. See Appendix B for error codes.

Comments None

HGIsHubSlotPortInGroup
Description Returns whether the specified port is currently configured in the group.

Syntax int HGIsHubSlotPortInGroup(int Hub, int Slot, int Port)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value Returns a positive (non-zero) number if TRUE, zero if FALSE. The return value is >= 0
if the function executed successfully. A failure code of less than zero is returned if the
function failed. See Appendix B for error codes.

Comments None

HGMultiBurstCount
Description Sets up the number of bursts for transmitting out a SmartCard while in

MULTI_BURST_MODE.

Syntax int HGMultiBurstCount(long lVal)

Parameters lVal long Specifies the burst count.

Range: 1 to 16,777,215.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction is only applied if HGTransmitMode, or HTTransmitMode has
selected MULTI_BURST_MODE. Use HGRun, HGStart, and HTRun to start the
transmission of the bursts.

Chapter 12
Function and Structure Reference

SmartLib User Guide 129

HGRemoveFromGroup
Description Along with HGSetGroup, this command can be used to remove individual hub/slot/port

designations from a currently configured group.

Syntax int HGRemoveFromGroup (int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGRemovePortIdFromGroup
Description Can be used to remove individual hub/slot/port designations from a currently

configured group that has been set up using HGSetGroup.

Syntax int HGRemovePortIdFromGroup (int iPortId)

Parameters iPortId int Identifies the port which is to be removed from the currently
configured group. The value used for the iPortId is determined
from the ordinal counting number of existing ports in the test bay.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments The first hub in the daisy chain from the control section would contain the first set of
ports to be identified. The port in the left-most (lowest numbered) slot in the first hub
is identified as iPortId = 1, the next port in the sequence going left to right across the
slots, would be identified as iPortId = 2, and so on until all existing ports in the first
hub have been identified. Any empty slots are skipped over for the purposes of
assigning PortId numbers. The next hub in the daisy chain connection (at the back of
the test bay) would then continue with the next counting number as the iPortId
identifier.

Example 1: Assume you have a 4-hub test bay with 20 ports in each hub. Then the
ports in the first hub are identified left to right as ports 1 through 20. The second hub
ports are identified left to right as ports 21 through 40. The third hub ports are
identified left to right as ports 41 through 60. And the fourth hub ports are identified
left to right as ports 61 through 80.

Example 2: Assume you have a four hub test bay with 7 ports in the first hub, 4 ports
in the second hub, no ports in the third hub and 3 ports in the fourth hub. The first hub
ports are identified left to right as ports 1 through 7. The second hub ports are
identified left to right as ports 8 through 11. The third hub is skipped over as any other
empty slots are and the counting continues at the next port, which happens to be in
the fourth hub. The ports in the fourth hub are then identified left-to-right as ports 12
through 15.

Chapter 12
Function and Structure Reference

SmartLib User Guide130

HGResetPort
Description Resets the SmartCards defined in the current group to a default condition with all

errors off.

Syntax int HGResetPort(int iResetType)

Parameters iResetType int Identifies the run mode of the board. Legal modes can be
conveyed using the following constants:

RESET_FULL Reset all card parameters including hardware
interface parameters (e.g. Token Ring Speed)

RESET_PARTIAL Reset all card parameters except hardware
interface parameters (e.g. Token Ring Speed)

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command is not implemented on the ATM and WAN (FR) SmartCards at this
time.

HGRun
Description Sets up the run state for all ports associated with the PortIdGroup defined by the

previous HGSetGroup(PortIdGroup) command.

The port can be set up to transmit a series of packets (“RUN” state), transmit a single
packet (“STEP” state) or stop transmission altogether (“STOP” state).

If the Burst mode has been set up to transmit a burst of packets (using the HTTransmit
command), then transitioning from “STOP” to “RUN” will cause the specified number of
packets to be transmitted.

This command works with HTSeparateHubCommands. If no setting is specified, the
default used for HGRun is HUB_DEFAULT_ACTION.

Syntax int HGRun(int iMode)

Parameters iMode int Identifies the run mode of the board. Legal modes can be
conveyed using the following constants:

HTRUN

HTRUN_VALUE Transmit continuously or send a burst of
packets. **Use HTRun_Value for Visual Basic.**

HTSTEP Transmit a single packet.

HTSTOP Halt transmission of packets altogether.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Because Visual Basic does not distinguish by case, this value has been put in the
ETSMBAPI.TXT file:

HTRUN_VALUE Transmit continuously or send a burst of
packets.

Chapter 12
Function and Structure Reference

SmartLib User Guide 131

HGSelectTransmit
Description Enables the Port B transmission of the SmartBits to be transmitted to the ports in the

currently defined group. Transmission mode is determined by iMode.

Syntax int HGSelectTransmit(int iMode)

Parameters iMode int Determines the function of the Port:

HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and have no effect on the SmartBits.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one SmartBits is attached to the SmartBits. It will
be ignored by the SmartBits if there is not an SmartBits present.

HGSetGroup
Description Groups a number of SmartBits ports. These ports may then be manipulated as a group

using the any of the SmartLib HG commands.

Syntax int HGSetGroup(char* pszPortIdGroup)

Parameters pszPortIdGroup char* A NULL terminated ASCII character string with a maximum
of 512 characters. This string defines which ports are members of
the active group.

Although a port is usually specified by identifying the iHub, iSlot,
and iPort, group members are identified by a single number. This
number is the actual sequence number of the port - with numbers
starting at the Master controller.

The pszPortIdGroup numbers:
* Start at 1 (as opposed to 0).
* Do not count blank slots as part of the sequence.
* Do not account for the hub number.

Example: If you had four different hubs with one card each, you
could include them all in the group with these values: “1,2,3,4”

Ports may be separated by commas and/or spaces. Any number
of commas or blank spaces may be inserted between the port
numbers, as long as the overall length of the string doesn’t exceed
512.

Dashes may also be used to identify the group. For example: “1-
100, 105, 256” groups the first one hundred ports as well as the
hundred and fifth, and the two hundred and fifty-sixth port.

You can group ports in ascending or descending order so that “4 -
1” is a valid value.

Port numbers are assigned from left to right, top to bottom, first
link to last link.

To clear an old group selection, use HGClearGroup. You can also
pass NULL as the PortIdGroup.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Chapter 12
Function and Structure Reference

SmartLib User Guide132

Comments Only one group can exist at a time. All HG commands will act upon the last
PortIdGroup defined by HGSetGroup(PortIdGroup). Groups may be defined and
redefined at any time. See also HGAddtoGroup.

The first hub in the daisy chain from the control section would contain the first set of
ports to be identified. The port in the left-most (lowest numbered) slot in the first hub is
identified as iPortId = 1, the next port in the sequence going left to right across the
slots, would be identified as iPortId = 2, and so on until all existing ports in the first hub
have been identified. Any empty slots are skipped over for the purposes of assigning
PortId numbers. The next hub in the stack would then continue with the next counting
number as the iPortId identifier.

HGSetGroupType
Description Reserves a group of ports by card types within a SmartBits configuration. These ports

may then be manipulated simultaneously with one another (as a group) using the any
of the HG commands defined herein.

Syntax int HGSetGroupType(int Index, int* pPortIdList)

Parameters Index int Size of card type array. The default setting is
CT_MAX_CARD_TYPE. A value of –1 will select all types of cards,
a value of 0 will clear the group selection.

pPortIdList int* An array of integers which describes the ports that are to be
grouped. pPortIdList[0] is designates CT_ACTIVE (10MB Ethernet)
card types to be included in the group. PPortIdList[1] is for
CT_PASSIVE card types, pPortIdList[2] is for CT_FASTX card
types, and so on for each of the CT_xxx card types.

For each value of pPortIdList[]:

0 means do not select this card type,

1 means to include this card type in the group.

For example:

Index = 8, and {0, 0, 1, 1, 0, 0, 0, 1} will select all the FAST,
TOKENRING, and GIGABIT cards.

To clear an old group selection, pass 0 in the Index.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Only one group can exist at any time for the HG commands.

Groups can cross hub boundaries.

Groups may be defined and redefined at any time.

All HG commands will act upon the last PortIdList defined by HGSetGroupType(Index,
PortIdList). This command can be used to reset a group previously set by
HGSetGroup command.

Chapter 12
Function and Structure Reference

SmartLib User Guide 133

HGSetSpeed
Description Sets selected speed for all ports associated with the PortIdGroup defined by the

previous HGSetGroup(PortIdGroup) command. The speed selected must be
appropriate to the addressed SmartCard type.

Syntax int HGSetSpeed(int iSpeed)

Parameters iSpeed int Determines the speed of the Port:

SPEED_10MHZ Sets a 10MB capable SmartCard to a 10 MHZ
Signaling rate

SPEED_100MHZ Sets a 100MB capable SmartCard to a 100 MHZ
Signaling rate

SPEED_4MHZ Sets a 4MB capable SmartCard to a 4 MHZ
Signaling rate

SPEED_16MHZ Sets a 16MB capable SmartCard to a 16 MHZ
Signaling rate

SPEED_155MHZ Sets a 155MB capable SmartCard to a 155 MHZ
Signaling rate

SPEED_25MHZ Sets a 25MB capable SmartCard to a 25 MHZ
Signaling rate

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HGSetTokenRingAdvancedControl
Description Generates specialized frames for all ports associated with the PortIdGroup defined by

the previous HGSetGroup(PortIdGroup) command.

This command only works for the TokenRing SmartCard.

Syntax int HGSetTokenRingAdvancedControl(TokenRingAdvancedStructure
*pTRAdvancedStructure)

Parameters pTRAdvancedStructure TokenRingAdvancedStructure* Points to a
TokenRingAdvancedStructure (see below), which contains
all the information required to transmit special control
frames.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command will cause ring operation to fail if not used with full knowledge of the
Token Ring Architectural Specification.

TokenRingAdvancedStructure
Parameter Description

int UseHoldingGap Token holding gap control.
1 Activate advanced gap control.
0 Do not issue advanced gap control.

int GapValue Time between frames when the token is not released between frames.

Range: 1 to 1,600,000 (number of 100 nanosecond periods between frames).

Default value: 1.

Chapter 12
Function and Structure Reference

SmartLib User Guide134

Parameter Description

int GapScale Scale value.
NANO_SCALE Scale in nanoseconds
MICRO_SCALE Scale in microseconds
MILLI_SCALE Scale in milliseconds

int UseIntermediate
FrameBits

Sets the Intermediate frame bit in the EDEL field of the frame. This bit is
defined in the Token Ring Specification to indicate that another frame is to
follow immediately, with no token being released between the frames. (See
the Token Ring Architectural Specification.)

1 Set Intermediate frame
0 Clear Intermediate frame

int UseAC Activates a user-specified Access Control field in transmitted frames.
1 Set AC from ACdata field
0 Set AC from captured token

int ACdata Access Control byte value. Consult the Token Ring Architectural Specification
for information on the bit fields in this byte. This byte is used to distinguish
between tokens and frames and to operate the Token Priority Protocol.
Setting bits in this byte incorrectly will probably cause ring errors.

int AdvancedControl1 Advanced control byte 1. This byte gives the user control over how the card
connects to the ring on startup and how it responds to ring errors.

Bit 3-2: Controls connection on startup.
0 No effect (previous settings in NVRAM are

used).
1 Connects to the ring on startup

(default).
2 Stays off the ring on startup.
3 Stays off the ring on startup and allows

bit 1 to control the connection.
Bit 1: Connection control

0 Deinserted
1 Inserted

Bit 0: ‘Halt on Error’ Stops card from transmitting
when it receives a Beacon, Claim or Purge
frame.

0 Inactive
1 Active

int AdvancedControl2 Advanced control byte 2.
Bit 4: Internal Loopback

0 Off
1 On

Bit 3: Test Mode. This mode is used to simulate an
Active Monitor when running as a Station so
that the card can be used standalone to test
passive Token Ring components.

0 Off
1 On

unsigned long
AReserved1

Reserved.

unsigned long
Areserved2

Reserved.

Chapter 12
Function and Structure Reference

SmartLib User Guide 135

HGSetTokenRingErrors
Description Generates error frame traffic simultaneously for all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command. This
command applies only to the TokenRing SmartCard.

Syntax int HGSetTokenRingErrors(int ErrorTrafficRatio, int iTRErrors)

Parameters ErrorTraficRatio int Specifies the error traffic ratio in tenths of percent.

Range: 0 to 1000. A value of 0 turns off error generation.

iTRErrors int Specifies the type of frame errors to generate. Value can be a
combined OR of the following defines:

TR_ERR_FCS FCS errors

TR_ERR_FRAME_COPY Frame copy errors

TR_ERR_FRAME_BIT Frame Bit errors

TR_ERR_FRAME_FS FS Frame errors

TR_ERR_ABORT_DELIMITER Abort delimiter errors

TR_ERR_BURST Burst errors

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments The number in the ratio is nominally in tenths of a percent. However, as it is
rationalized to a count the precision will be poor at large percentage values.

HGSetTokenRingLLC
Description Configures an LLC frame simultaneously for all ports associated with the PortIdGroup

defined by the previous HGSetGroup(PortIdGroup) command. This command applies
only to the TokenRing SmartCard.

Syntax int HGSetTokenRingLLC(TokenRingLLCStructure *pTRLStructure)

Parameters pTRLStructure TokenRingLLCStructure* Points to a TokenRingLLCStructure
(see below), which contains all the information required to preform
LLC Type 1 frames.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments TokenRing MAC header also has to be defined for this command to take effect.

TokenRingLLCStructure
Parameter Description

int UseLLC Logical Link Control (LLC).

0 No LLC added to MAC frame header.
1 Add LLC to the MAC frame header.

int DSAP Destination Service Access Point.
Range: 0 to 255 (0x00 to 0xFF).

int SSAP Source Service Access Point.
Range: 0 to 255 (0x00 to 0xFF).

int LLCCommand Sets the type of LLC field to be added to the frame header.
0 TEST frame set to ‘Poll’
1 SNAP frame (used to encapsulate an Ethernet

frame from the ‘type’ field)

Chapter 12
Function and Structure Reference

SmartLib User Guide136

HGSetTokenRingMAC
Description Configures a TokenRing MAC header simultaneously for all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command. This
command applies only to the TokenRing SmartCard.

Syntax int HGSetTokenRingMAC(TokenRingMACStructure *pTRMStructure)

Parameters pTRMStructure TokenRingMACStructure* Points to a TokenRingMACStructure
(see page Error! Bookmark not defined.), which defines a
preformed MAC header.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

TokenRingMACStructure
Parameter Description

int UseMAC MAC header control. The MAC header consists of AC and FC bytes, followed
by MAC destination and source addresses, followed by optional LLC control,
followed by optional SourceRouteAddress information. AC and FC are always
prepended to frame data.

0 No MAC header prepended to
frame data.

1 Prepend a MAC header to the
frame data.

int Stations Reserved. Must be set to 1.

int MACSrc[6] Source MAC Address.

int MACDest[6] Destination MAC Address.

int FramesPerToken Source MAC Address.

int FrameControl This is the value of the Frame Control byte put on the front of each frame.
This byte is independent of the fill pattern and any pre-formed header may be
overwritten by a VFD field.

This byte is defined fully in the Token Ring Architectural Specification and
should not be altered from the default value of 0x40 (TRFC_DEFAULT)
without knowledge of the consequences.

Several other values are defined in the header file:
TRFC_DEFAULT Standard frame
TRFC_PCF_BEACON Beacon
TRFC_ PCF_CLAIMTOKEN Claim Token
TRFC_ PCF_RINGPURGE Ring Purge
TRFC_ PCF_AMP Active Monitor Present
TRFC_ PCF_SMP Standby Monitor Present
TRFC_ PCF_DAT Duplicate Address Test
TRFC_ PCF_RRS Remove Ring Station

Chapter 12
Function and Structure Reference

SmartLib User Guide 137

HGSetTokenRingProperty
Description Simultaneously configures ring operation characteristics for all ports associated with

the PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command. This
command only works for TokenRing SmartCard.

Syntax int HGSetTokenRingProperty(TokenRingPropertyStructure *pTRPStructure)

Parameters pTRPStructure TokenRingPropertyStructure* Points to a
TokenRingPropertyStructure (see below), which contains all the
information required to configure ring operation.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command defines card properities that are retained in non-volatile storage. These
parameters should not be altered on a live ring as they will probably cause ring
malfunction (usually Beaconing by other stations, which might cause them to close
down pending a hard reset).

TokenRingPropertyStructure
Parameter Description

int SpeedSetting Ring speed.

TR_SPEED_4MBITS 4 Mbits/Sec
TR_SPEED_16MBITS 16 Mbits/Sec

int EarlyTokenRelease Allows a station to transmit a token immediately after a frame was sent. This
feature only applies to a ring running at 16 Mbps.

TR_TOKEN_DEFAULT Do not allow.
TR_TOKEN_EARLY_RELEASE Allow.

int DuplexMode Half duplex or full duplex.
TR_DUPLEX_HALF TKP Half duplex
TR_DUPLEX_FULL TXI Full duplex

int DeviceOrMAUMode Configures the TokenRing SmartCard to be a port or a station.
TR_MODE_MAU Port
TR_MODE_DEVICE Station

Chapter 12
Function and Structure Reference

SmartLib User Guide138

HGSetTokenRingSrcRouteAddr
Description Configures a Source Route Address(SRA) simultaneously for all ports associated with

the PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command. This
command applies only to the TokenRing SmartCard.

Syntax int HGSetTokenRingSrcRouteAddr(int UseSRA, int *piData)

Parameters UseSRA int specifies whether an SRA field will be included in a TokenRing
frame.

0 No SRA defined

1 Use SRA defined in piData parameter.

piData int * Points to an array of int which contains the Source Route
Address information. The maximum length of this array is 32 and
the length information is encoded in the lower 5 bits of the first byte
of SRA.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This field is part of a pre-formed header and so the MAC header has to be active for it
to be active. The data in this field will be parsed by the card to determine the size of the
source routing field to use and the maximum frame size to transmit. (See the Token
Ring Architectural Reference for details of how to code this field.)

HGSetVGProperty
Description Configures VG SmartCards operating characteristics simultaneously for all ports

associated with the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command.

Syntax int HGSetVGProperty(VGCardPropertyStructure *pVGPStructure)

Parameters pVGPStructure VGCardPropertyStructure* Points to a VGCardPropertyStructure
(see below), which contains all the information required to configure
VG Cards.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

VGCardPropertyStructure
Parameter Description

int EndOrMasterNode Allows a VG SmartCard to be configured as an End node or a Master
node.

VG_CFG_END_NODE End Node
VG_CFG_MASTER Master Node

int PriorityPromotion Priority promotion.
VG_CFG_NO_PRIO_PROMO No promotion
VG_CFG_PRIORITY_PROMO Yes

int EtherNetOrTokenRing Configures the VG SmartCard to be operated in Ethernet or in
TokenRing.

VG_CFG_ETHERNET Ethernet
CG_CFG_TOKENRING TokenRing

Chapter 12
Function and Structure Reference

SmartLib User Guide 139

HGStart
Description Simultaneously starts transmission of packets from all ports associated with the

PortIdGroup defined by previous HGSetGroup(PortIdGroup) command.

Syntax int HGStart(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This command works in conjunction with HTSeparateHubCommands. If no setting is
specified, the default used for HGStart is HUB_DEFAULT_ACTION.

HGStep
Description Simultaneously causes the transmission of a single packet or burst from all ports

associated with the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command.

Syntax int HGStep(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This command works in conjunction with HTSeparateHubCommands. If no setting is
specified, the default used for HGStep is HUB_DEFAULT_ACTION.

HGStop
Description Simultaneously halts the transmission of packets from all ports associated with the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup) command.

Syntax int HGStop(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This command works in conjunction with HTSeparateHubCommands. If no setting is
specified, the default used for HGStop is HUB_DEFAULT_ACTION.

HGSymbol
Description Generates symbol errors for the 100 Mbps SmartCards. The group of ports can be set

up to transmit a series of packets which generates invalid wave form data pattern. This
command applies only to 100 Mbits SmartCards.

Syntax int HGSymbol(int Mode)

Parameters iMode int Identifies the symbol mode of the board. Legal modes can be
conveyed using the following constants:

SYMBOL_OFF Turn off symbol errors

SYMBOL_ON Turn on symbol errors

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide140

HGTransmitMode
Description Indicates how to control the transmission of packets when running for all ports

associated with the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command.

Syntax int HGTransmitMode(int iMode)

Parameters iMode int Indicates the mode of operation when transmitting packets
according to the following defined values:

CONTINUOUS_PACKET_MODE Sets port to transmit single packets
continuously.

SINGLE_BURST_MODE Sets port to transmit a single burst of
packets, and then stop.

MULTI_BURST_MODE Sets port to transmit multiple bursts of
packets, indicated by the HTMultiBurstCount
command, with each burst being separated by
the value specified in the HTBurstGap
command, and then stop.

CONTINUOUS_BURST_MODE Sets port to continuously send bursts of
packets with each burst being separated by
the value specified in the HxBurstGap
command.

ECHO_MODE Sets port to transmit a single packet upon
receiving a Receive Trigger event.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 141

HGTrigger
Description Sets up the triggering mechanism from all ports associated with the PortIdGroup defined

by the previous HGSetGroup(PortIdGroup) command. HTTrigger specifies the trigger
number (1 or 2), the operational configuration, trigger pattern range, trigger pattern
offset, and trigger pattern data.

Syntax int HGTrigger(int iTrigId, int iConfig, HTTriggerStructure* phtTStruct)

Parameters iTrigId int Identifies the trigger source. There are two possible triggers on
each SmartCard. They are identified as follows:

HTTRIGGER_1 Trigger 1

HTTRIGGER_2 Trigger 2

iConfig int There are three possible types of configurations for the triggers
on the SmartCards:

HTTRIGGER_OFF Disables the triggering mechanism for TrigId

HTTRIGGER_ON Enables the triggering mechanism for TrigId

HTTRIGGER_DEPENDENT Enables the triggering mechanism for TrigId
after the other trigger has triggered.

phtTStruct HTTriggerStructure* A structure containing the trigger pattern,
offsets and ranges (see below). Note that the maximum range is 6
bytes. Though the range is specified in bytes, the specified number
is rounded up to the nearest byte multiple. i.e.; the SmartCards can
only trigger on patterns that are a length that is a multiple of 8 bits.
The offset ranges from 1 to 12,112 bits (specified in bits).

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments It is possible to misconfigure triggers when using HTTRIGGER_DEPENDENT.

A TrigId set to HTTRIGGER_DEPENDENT is to be active after the other TrigId trigger
has occurred. So, if trigger 2 is set to be dependent on trigger 1:

A properly configured trigger dependent combination would be (the order of the
commands does matter):

HGTrigger(HTTRIGGER_1,HTTRIGGER_ON,&TStruct)
HGTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct)

A misconfigured trigger combination would be:
HGTrigger(HTTRIGGER_1,HTTRIGGER_OFF,&TStruct)
HGTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct)

Here, trigger 2 will never fire because trigger 1 is off.

HTTriggerStructure
Parameter Description

unsigned Offset Specifies the number of bit times that pass between the first non-preamble bit
and when the trigger word is searched for in the data stream.

Range: 0 to 65535 (0x0000 to 0xFFFF), where 0 matches the first bit after the
preamble.

int Range Specifies the size of the trigger word in bytes.
Range: 1 to 6.

int Pattern[6] Array of bytes containing the trigger word.

Pattern[0] is the LSByte, Pattern[5] is the MSByte. For triggers 1 and 2, enter the
data pattern array in reverse order.

Chapter 12
Function and Structure Reference

SmartLib User Guide142

HGVFD
Description Sends VFD information to all ports in the group defined by the previous

HGSetGroup(PortIdGroup) command.

Syntax int HGVFD(int VFDId, HTVFDStructure* HStruct)

Parameters VFDId int Identifies the VFD pattern being addressed. There are a total of
three VFD patterns. They are identified as shown below:

HVFD_1 VFD Pattern 1

HVFD_2 VFD Pattern 2

HVFD_3 VFD Pattern 3

HStruct HTVFDStructure* Structure holds VFD information used with a
SmartCard (VFD Configuration, Range, Offset and Pattern) (see
below).

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments See the definition of HTVFDStructure below.

HTVFDStructure
Parameter Description

int Configuration Determines the capabilities of the VFD being implemented. Select the
constant that applies.

Configurations specific to VFD1 and VFD2 are:
HVFD_NONE VFD off
HVFD_RANDOM Random pattern
HVFD_INCR Incrementing pattern
HVFD_DECR Decrementing pattern
HVFD_STATIC Static pattern

Configuration options for VFD3 are:
HVFD_NONE VFD3 off
HVFD_ENABLED VFD3 on

NOTE: VFD3 operates differently from 1 and 2. It is a large buffer that
can be used in segments to create more complex patterns than
increment or decrement.

int Range Determines the length of the VFD field that will be laid into the frame.

For VFD1 and VFD2:
To specify the length in byte units, use a positive integer from 1 to 6. To
specify the length in bit units, use a negative integer from –1 to
–48. The minus symbol flags the library that the number represents bits
instead of bytes. Since 100Mbps Ethernet cards send traffic in
increments of four bits, a range that is not in multiples of four will be
rounded up to the nearest nibble for these cards.

For VFD3:
The length of VFD3 is set in bytes. The byte length is from 1 to 2047.

int Offset Determines the bit number in the frame where VFD is overlaid.
Measurement begins immediately after the preamble.

Range: 0 to 12,112.

For a 100Mbps Ethernet SmartCard, values that are not multiples of four
are rounded up to the next 4 bit (nibble) increment.

Chapter 12
Function and Structure Reference

SmartLib User Guide 143

int Data Points to an array of integers that constitute the pattern for the VFD.

For Visual Basic, use int*iData instead of int*Data.

For VFD1 and VFD2 only:
Elements values are entered into the array with the most significant bit
first. For example:

iData[0] 0
iData[1] 1
iData[2] 2
iData[3] 3
iData[4] 4
iData[5] 5

Creates the VFD pattern: 543210[BS8]

int DataCount This value has different uses for VFD1 or 2 and for VFD3.

For VFD1 and VFD2:

The DataCount is used with Configuration to limit the number of patterns
generated.

DataCount is the Cycle-count (number of different patterns that will be
generated before being repeated).

Example:

If Configuration = HVFD_INCR
And if DataCount = 6
Results in six VFD patterns. The initial pattern is used in the first frame.
The next five values increment, creating a series of five new patterns.
The initial pattern is then used again, and the cycle repeats itself.

For VFD3:

The buffer size of the Data array. Used in combination with the Range to
determine how often a pattern is repeated. For example, if the DataCount
is 24 and the Range is 6, there will be four six byte patterns before the
first is repeated.

For Gigabit Ethernet cards, the byte length is from 1 to 16384. For all
other SmartCards, the byte length is from 1 to 2047[BS9].

HTAlign
Description Create alignment errors on the selected Hub/Slot/Port.

Syntax int HTAlign(int iBits, int iHub, int iSlot, int iPort)

Parameters iBits int Sets the number of extra alignment bits to transmit. Valid range is
0 to 7. Setting this value to 0 disables generation of packets with
alignment bit errors.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in
iHub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide144

HTBurstCount
Description Sets the number of packets to transmit in a single burst from a SmartCard.

Syntax int HTBurstCount(long lVal, iHub, iSlot, iPort)

Parameters lVal long Specifies the burst count. Range: 1 to 16,777,215.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in
Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction does not cause a burst of packets to be sent. Use HGTransmitMode, or
HTTransmitMode to select a burst mode, and then use HGRun, HGStart, HGStep, or
HTRun to actually start the transmission of the burst.

HTBurstGap
Description Sets up the time gap between bursts of packets from a SmartCard.

Syntax int HTBurstGap(long lVal, iHub, iSlot, iPort)

Parameters iVal long Specifies the inter-burst gap in tenths of a microsecond. Range:
1 to 16,777,215.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1). Remember
to subtract one since the hub identification starts at 0. See Hub
Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in
Hub) to 19 (last card in Hub).

iPort int Identifies port on the card or module.

Return Value he return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction is only applied if HGTransmitMode, or HTTransmitMode has selected
one of the MULTI_BURST_MODE, or CONTINUOUS_BURST mode selections. Use
HGRun, HGStart, and HTRun to actually start the transmission of the bursts.

Chapter 12
Function and Structure Reference

SmartLib User Guide 145

HTBurstGapAndScale
Description Sets up the time gap between bursts of packets, at the given scale from a SmartCard.

Syntax int HTBurstGapAndScale(long lVal, int iScale, iHub, iSlot, iPort)

Parameters lVal long Specifies the inter-burst gap value. Legal values range
anywhere from the lowest gap possible on the card being
addressed up to a maximum of 1.6 sec.

iScale int Specifies the scale of the gap value according to following.
NANO_SCALE = nanoseconds scale
MICRO_SCALE = microseconds scale
MILLI_SCALE = milliseconds scale

Period may range from 1 to 1,600,000,000 nanoseconds for
NANO_SCALE; from 1 to 1,600,000 microseconds for
MICRO_SCALE; and from 1 to 1600 milliseconds for
MILLI_SCALE. Values outside this range return an error code.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction is only applied if HGTransmitMode, or HTTransmitMode has selected
one of the MULTI_BURST_MODE, or CONTINUOUS_BURST mode selections. Use
HGRun, HGStart, and HTRun to actually start the transmission of the bursts.

Chapter 12
Function and Structure Reference

SmartLib User Guide146

HTCardModel
Description Retrieves an array of integers that corresponds to the card model written at the top of

the SmartCard front panel.

Syntax int HTCardModel(int iCardModels[MAX_HUBS][MAX_SLOTS])

Parameters iCardModels int On return, this array will be filled with CM_ values where the
hub and slot indices of the array refer to an iCardModel entry
which correspond to the model of the SmartCard actually plugged
into the SmartBits chassis. The returned values will be one of the
following:

CM_UNKOWN

CM_NOT_PRESENT

CM_SE_6205

CM_SC_6305

CM_ST_6405

CM_ST_6410

CM_SX_7205

CM_SX_7405

CM_SX_7410

CM_TR_8405

CM_VG_7605

CM_L3_6705

CM_AT_9025

CM_AT_9155

CM_AS_9155

CM_GX_1405

CM_WN_3405

CM_AT_9015

CM_AT_9020

CM_AT_9034

CM_AT_9045

CM_AT_9622

CM_L3_6710

CM_SX_7210

CM_ML_7710

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 147

HTClearPort
Description Clears internal counters in a SmartCard port.

Syntax int HTClearPort(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTCollision
Description Determines the collision mode, and count for the 100 Mbps Fast SmartCard.

Syntax int HTCollision(CollisionStructure* CStruct, int iHub, int iSlot, int iPort)

Parameters CStruct CollisionStructure* Holds information pertaining to the collision
mode (off, on), and count.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See the definition of CollisionStructure on page 120. The offset and length fields are
not used for 100 Mbps cards.

Chapter 12
Function and Structure Reference

SmartLib User Guide148

HTCollisionBackoffAggressiveness
Description Determines the wait factor for backing off from multiple collisions.

Syntax int HTCollisionBackoffAggressiveness(unsigned int uiAggressiveness, int iHub, int
iSlot, int iPort)

Parameters uiAggressiveness unsigned int Set the backoff factor. The length of time actually
delayed follows as powers of two using this factor.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at
0. See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first
slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTCRC
Description Create packets with CRC errors on the selected Hub/Slot/Port.

Syntax int HTCRC(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Set the error facility on or off. Valid flags: ET_ON and ET_OFF

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments (Not used by the TokenRing SmartCard).

Chapter 12
Function and Structure Reference

SmartLib User Guide 149

HTDataLength
Description This command is used to specify the length of the data field in the packets being

transmitted by the specified SmartBits port. A random packet size can also be
selected.

Syntax int HTDataLength(int iLength, int iHub, int iSlot, int iPort)

Parameters iLength int Specifies the length of the packets that are to be transmitted on
the addressed port. The length is specified in bytes, and it includes
everything between the preamble and the CRC. The actual
transmitted packet will be extended four bytes for the CRC. Length
can range from 1 to 8191. A Length of 0 will cause random packet
sizes to be transmitted.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot wh

ere the card is located. Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTDribble
Description Create dribble bit errors on the selected Hub/Slot/Port.

Syntax int HTDribble(int iBits, int iHub, int iSlot, int iPort)

Parameters iBits int Sets the number of dribble bits to transmit. Valid range is 0 to
7. Setting this value to 0 disables generation of packets with
dribble bit errors. On Fast Ethernet cards and modules, this value
is rounded down to 2 or 4 (nearest nibble).

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide150

HTDuplexMode
Description Indicates whether to set full duplex or half duplex mode for the hub/slot/port indicated.

Syntax int HTDuplexMode(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Sets the Duplex mode where iMode should be one of the
following:

FULLDUPLEX_MODE Full duplex mode on
HALFDUPLEX_MODE Half duplex mode on

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first
slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments (Not used by the TokenRing SmartCard)

HTFillPattern
Description Specifies the background fill pattern that is laid into the frame. This pattern is written

over by other fields such as VFDs and Signature fields.

If the Fill Pattern is not specified, the default is all 0s.

Syntax int HTFillPattern(int iSize, int* piData, int iHub, int iSlot, int iPort)

Parameters iSize int Identifies the size, in bytes, of the fill pattern contained in the
Data array. Size may range from 60 to 2044. A value of 0 (zero)
will cause a random data pattern to be generated.

piData int* Points to the array which contains the data pattern to be
transmitted. A value of NULL will cause a random data pattern to
be generated.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first
slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments A random data pattern will be generated if either the iSize parameter is 0, or the
piData array pointer parameter in NULL.

Chapter 12
Function and Structure Reference

SmartLib User Guide 151

HTFindMIIAddress
Description This function will find the first MII PHY address that appears to have a legal device

present. This command applies only to 100 Mb SmartCards.

Syntax int HTFindMIIAddress(unsigned int* puiAddress, unsigned short* puiControl Bits, int
Hub, int Slot, int Port)

Parameters puiAddress unsigned int* Specific address found is returned here.

puiControlBits unsigned short* Contents of the control register are returned
here.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first
slot in iHub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current SmartCards,
Port is always 0.)

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Of the 32 possible addresses on an MII transceiver, this command will find the lowest
address that returns a legal control register value.

HTFrame
Description Puts specified frame elements into the SmartCard frame buffer.

Use HTFrame in conjunction with NSCreateFrame, NSModifyFrame, and
NSCreateFrameAndPayload.

Syntax long HTFrame (long iFrameID, int iHub, int iSlot, int iPort, unsigned short
uiStreamIndex)

Parameters lFrameID long The FrameID number is unique for each frame created with
NSCreateFrame. It is returned when a frame is created, and is
used to identify the specified frame “blueprint”. This number does
not change when NSModifyFrame is used.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

uiStreamIndex unsigned short This uiStreamIndex has a value of 0 (not used),
unless you are working with ATM. Because of the complexity of an
ATM stream setup, each ATM stream must be indexed. ATM
streams include traffic information as well as frame content.

See ATM_STREAM in the Message Functions manual for more
information.

Since NSCreateFrame functions are intended for “layer 2” mode,
VTEs and Signature fields are not part of these frames.

Return Value The return value is >= 0 if the function executed successfully. A negative value is
returned if the function fails. See Appendix B for error codes.

Comments A related function is NSDeleteFrame.

Chapter 12
Function and Structure Reference

SmartLib User Guide152

HTGap
Description Specifies the inter-packet gap that is to be transmitted on the addressed port. Also

allows random gaps to be transmitted.

Syntax int HTGap(long lPeriod, int iHub, int iSlot, int iPort)

Parameters lPeriod long On 10Mbit cards, this value equals the number of tenths of
microseconds between transmitted packets in bit time. On 100Mbit
SmartCards, this value equals the number of tens of nanoseconds
between transmitted packets. In either case, lPeriod may range
from 10 to 1,600,000. A value of 0 (long) will cause a random gap
to be generated. For example, if lPeriod = 96, for 10Mbit cards, the
Gap will be 96*0.1us = 9.6us, and for 100Mbit cards, the Gap will
be 96*10ns = 960ns. In both cases, the cards get the minimum
legal interpacket gap.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 153

HTGapAndScale
Description Specifies the inter-packet gap (based on a selected time unit “scale”) to be transmitted

from the specified port. Also allows random gaps to be transmitted.

Syntax int HTGapAndScale(long lPeriod, int iScale, int iHub, int iSlot, int iPort)

Parameters lPeriod long Identifies the number of time units between transmitted
packets. A value of 0 (long) will cause a random gap to be
generated.

iScale int Determines the size of the unit (scale) for the lPeriod parameter
based on the following:
NANO_SCALE = nanoseconds scale
MICRO_SCALE = microseconds scale
MILLI_SCALE = milliseconds scale

Possible values range from 1 to 1,600,000,000 nanoseconds for
NANO_SCALE; from 1 to 1,600,000 microseconds for
MICRO_SCALE; and from 1 to 1600 milliseconds for
MILLI_SCALE. Values outside this range return an error code.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Gap is set according to the valid increments of the network topography. For example, if
a 100 Mbps Ethernet network is being tested, the gap is set in increments of 40
nanoseconds. Whether nanoseconds, microseconds, or milliseconds is selected,
SmartLib divides the increment (in this case, 40 ns) into the desired gap setting and
drops the remainder.

Chapter 12
Function and Structure Reference

SmartLib User Guide154

HTGetCardModel
Description Retrieves a character string which matches the card model written at the top of the

SmartCard front panel.

Syntax int HTGetCardModel(char* pszCardModel, int iHub, int iSlot, int iPort)

Parameters pszCardModel char* A pointer to a character array into which the card model
identifier will be written. The card model identifier is the front panel
label on the SmartCard (e.g. L3-6710, ML-7710, AT-9622, etc).

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value Upon success, the return value is the correct CM_ integer value for the SmartCard
addressed. Possible values are:

CM_UNKNOWN –1
CM_NOT_PRESENT 0
CM_SE_6205 1
CM_SC_6305 2
CM_ST_6405 3
CM_ST_6410 4
CM_SX_7205 5
CM_SX_7405 6
CM_SX_7410 7
CM_TR_8405 8
CM_VG_7605 9
CM_L3_6705 10
CM_AT_9025 11
CM_AT_9155 12
CM_AS_9155 13
CM_GX_1405 14
CM_WN_3405 15
CM_AT_9015 16
CM_AT_9020 17
CM_AT_9034 18
CM_AT_9045 19
CM_AT_9622 20
CM_L3_6710 21
CM_SX_7210 22
CM_ML_7710 23
CM_ML_5710A 24
CM_WN_3415 25
CM_WN_3420 26
CM_LAN-6200 27
CM_LAN-6100 28
CM_LAN_3200 29
CM_POS_6500 30

Return Value CM_GX_1420 31
CM_LAN-6201 32
CM_AT_9155C 33

A failure code (less than zero) is returned if the function failed.
See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 155

HTGetCounters
Description Retrieves information from all the counters within the addressed SmartBits port. This

information is placed into the HTCountStructure pointed to in the input argument.

Syntax int HTGetCounters (HTCountStructure* phtHStruct, int iHub, int iSlot, int iPort)

Parameters phtHStruct HTCountStructure* A pointer to the structure in which count
information is to be placed. See the definition of
HTCountStructure below.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments It is assumed that the calling function has declared a HTCountStructure and reserved
memory for it.

HTCountStructure
Parameter Description

unsigned long RcvPkt Current number of packets received

unsigned long TmtPkt Current number of packets transmitted

unsigned long Collision Current number of collisions

unsigned long RcvTrig Current number of Trigger received

unsigned long RcvByte Current number of Bytes received

unsigned long CRC Current number of CRC errors received

unsigned long Align Current number of Alignment errors detected

unsigned long Oversize Current number of Oversize errors detected

unsigned long Undersize Current number of Undersize errors detected

unsigned long RcvPktRate Number of received packets per second

unsigned long TmtPktRate Number of transmitted packets per second

unsigned long CRCRate Number of CRC errors received per second

unsigned long OversizeRate Number of Oversize errors received per second

unsigned long UndersizeRate Number of Undersize errors received per second

unsigned long CollisionRate Number of Collisions detected per second

unsigned long AlignRate Number of Alignment errors received per second

unsigned long RcvTrigRate Number of triggers received per second

unsigned long RcvByteRate Number of bytes received per second

Chapter 12
Function and Structure Reference

SmartLib User Guide156

HTGetEnhancedCounters
Description Retrieves standard counters and card related counters from the port. This information

is placed into the EnhancedCountersStructure pointed to in the input argument.

Syntax int HTGetEnhancedCounters(EnhancedCountersStructure* pEnCounter, int iHub, int
iSlot, int iPort)

Parameters pEnCounter EnhancedCountersStructure* A pointer to the first element of an
array of counter structures in which count information is to be
placed. See the definition of EnhancedCountersStructure on
page 125.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTGetEnhancedStatus
Description Retrieves card related status information from the port. This information is placed into

the long pointed to in the input argument. This command applies to SmartCards and
TokenRing SmartCards.

Syntax int HTGetEnhancedStatus(long* piData, int iHub, int iSlot, int iPort)

Parameters piData long* A pointer to an long in which status information is to be
placed.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes. If the return
is successful, then the following is true:

piData A bitmap of card status information is returned in the high three
bytes:

If bit set on a Token Ring SmartCard:
TR_STATUS_ACCESSED Card received stream download
TR_STATUS_BADSTREAM Not used
TR_STATUS_BURST_MODE Card is in burst mode
TR_STATUS_BEACONING Card received MAC beacon frame
TR_STATUS_DEVICE

If set in half duplex, station
If off in half duplex, MAU
If set in full duplex, adapter
If off in full duplex, concentrator

Chapter 12
Function and Structure Reference

SmartLib User Guide 157

TR_STATUS_EARLY_TOKEN_RELEASE
Early token release
enabled

TR_STATUS_FULL_DUPLEX
Full duplex

TR_STATUS_16MB 16 Mbps mode
TR_STATUS_RING_ALIVE

Ready for TX
TR_STATUS_LATENCY_STABLE

Latency value stable for
readout.

TR_STATUS_TRANSMITTING
Transmitting

If bit set on a Gigabit Ethernet SmartCard:
GIG_STATUS_LINK Link established
GIG_STATUS_TX_PAUSE Pause holdoff in process
GIG_STATUS_CAPTURED_FRAMES

Frames captured

GIG_STATUS_CAPTURE_STOPPED
Capture stopped

If bit set on an SX-7410 SmartCard:
FAST7410_STATUS_LINK

Link established
FAST7410_STATUS_TX_PAUSE

Pause holdoff in process

If bit set on a L3-6705 or L3-6710 SmartCard:
L3_STATUS_6710 If set, L3-6710,

If off, L3-6705

If bit set on a VG-xxxx SmartCard:
VG_STATUS_MODE If set, Ethernet,

If off, TokenRing

If bit set on a Frame Relay SmartCard:
FR_STATUS_LINK_OK link established
FR_STATUS_GROUP_MEMBER

card is “grouped”

FR_STATUS_UNI_UP UNI is up
FR_STATUS_EIA_DSR DSR line is high
FR_STATUS_EIA_CTS CTS line is high
FR_STATUS_EIA_DCD DCD line is high
FR_STATUS_EIA_TM TM line is high
FR_STATUS_EIA_DTR DTR line is high
FR_STATUS_EIA_RTS RTS line is high
FR_STATUS_EIA_RDL RDL line is high
FR_STATUS_EIA_LLB LLB line is high

Comments The low byte contains card LED information. Refer to the appendix on LED values for
more information.

Chapter 12
Function and Structure Reference

SmartLib User Guide158

HTGetHubLEDs
Description Determine the state of the LEDs on a SmartBits hub.

Syntax int HTGetHubLEDs(int iHub, int* piLEDs)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

piLEDs int* a pointer to an integer array of MAX_SLOTS size that receives
the LED states of all SmartCards in hub iHub.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Behavior of this function is undefined if the hub contains passive cards.

HTGetLEDs
Description Determine the state of the LEDs on an SmartCard type at the specified hub/slot/port.

Syntax int HTGetLEDs(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs) –1.
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is the current state of the LEDs. This return value can be ANDed
against the following to determine if the LED is on.

HTLED_TXRED Unconfigured card

HTLED_TXGREEN Transmitting

HTLED_COLLRED Collision detected

HTLED_COLLGREEN Trigger detected

HTLED_RXRED Receive with errors

HTLED_RXGREEN Receive

A failure code of less than zero is returned if the function failed. See Appendix B for
error codes.

Comments This function is available only for SmartCards. LED return states are not a hardware
function, but are derived from the states of the counters. If both HTLED_COLLRED and
HTLED_COLLGREEN are set, then the LED is yellow. No other LED can be yellow.

Chapter 12
Function and Structure Reference

SmartLib User Guide 159

HTGetHWVersion
Description Retrieves version information of the specified SmartCard. Information is retrieved into

pulData.

Syntax int HTGetHWVersion(unsigned long* pulData, int iHub, int iSlot, int iPort)

Parameters pulData unsigned long* A pointer to an unsigned long array in which
version information is to be placed. The size of the array depends
on specific card inquired. An array size of 32 is recommended.
[See comments below.]

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully and will indicate the
number of items in the pulData array which have been loaded with version information
related to this SmartCard. For example, a TokenRing Card will return 3. A failure code
of less than zero is returned if the function failed. See Appendix B for error codes.

Comments Each SmartCard will fill the pulData array with only that number of items that is given
as the return value. No other items in the pulData will be changed. A TokenRing Card
will return Firmware, Transmit, and Receive information in the unsigned long array
pointed at by pulData. It is recommended to zero the pulData array items prior to this
call.

Chapter 12
Function and Structure Reference

SmartLib User Guide160

HTGetStructure
Description Sends a command to a SmartCard which accepts HTGetStructure() actions. The

commands, defines, and structure definitions for this function can be found in the
Message Functions manual. See the separate sections for Ethernet, Fast Ethernet,
Gigabit, Multi-Layer, ATM, and Frame Relay SmartCards. These SmartCards allow
control using HTSetCommand(), HTSetStructure(), and HTGetStructure(). The correct
combination of iType parameter values and the structure parameter cause the
SmartCards to be set up in an elegant and intricate manner.

Syntax int HTGetStructure(int iType1,int iType2,int iType3,int iType4,void* pData,int iSize,int
iHub, int iSlot, int iPort);

Parameters iType1 int defines the command action. The value (and action) depends
on the SmartCard being addressed.

iType2 int value depends on SmartCard

IType3 int value depends on SmartCard

IType4 int value depends on SmartCard

pData void* Pointer to a structure or an array in which returned data will
be placed.

iSize int indicates the maximum size of the pData pointer which should
be utilized. While in most cases this will be the size of the
structure, in some cases it is the size of an array of structures or
bytes. See the Message functions manual for clarification.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the SmartCard is located. Range: 0
(first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. The exact value will vary
according to what iType parameters have been used The return value is < 0 if the
function failed. See Appendix B for error codes.

Comments See the Message functions manual for appropriate values for the iType and structure
parameters for HTSetCommand(), HTSetStructure(), and HTGetStructure().

Chapter 12
Function and Structure Reference

SmartLib User Guide 161

HTHubId
Description Fill an array with the currently connected port types.

Syntax int HTHubId(char PortTypes[MAX_HUBS][MAX_SLOTS][MAX_PORTS])

Parameters PortTypes char An array of character that will be filled with one of the available
card types. The card types are:

A 10Mb Ethernet

F 10/100Mb Fast Ethernet

T 4/16Mb TokenRing

V VG/AnyLan

3 Layer 3 10Mb Ethernet

G Gigabit Ethernet

S ATM Signaling

N Not present

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTHubSlotPorts
Description Fill an array with the currently connected port types.

Syntax int HTHubSlotPorts(int iPortTypes[MAX_HUBS][MAX_SLOTS][MAX_PORTS])

Parameters iPortTypes int An array of integers that will be filled with one of the available
card types. The card types are:

CT_ACTIVE 10Mb Ethernet

CT_FASTX 10/100Mb Ethernet

CT_TOKENRING 4/16Mb TokenRing

CT_VG VG/AnyLan

CT_L3 Layer 3 10Mb Ethernet

CT_GIGABIT Gigabit Ethernet

CT_ATM_SIGNALING ATM Signaling

CT_NOT_PRESENT Not present

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments For Tcl: Use the utility function ETMake3DArray in order to create 3D arrays in Tcl.

Chapter 12
Function and Structure Reference

SmartLib User Guide162

HTLatency
Description Tests latency using the SmartBits.

Syntax int HTLatency(int iMode, HTLatencyStructure* pHTLat, int iHub, int iSlot, int iPort)

Parameters iMode int Set one of four specific modes of operation:
HT_LATENCY_OFF removes the SmartCard from participating in any

latency measurements.
HT_LATENCY_RX Sets the SmartCard as a latency receiver. Only

ports set as receivers can use the latency
report function.

HT_LATENCY_RXTX Set as latency receiver, and also as latency
transmitter. The receive setting enables the
latency report function on this card

HT_LATENCY_TX Set as latency transmitter. (can not use the
latency report function)

HT_LATENCY_REPORT Enables latency counter value to be returned in
the ulReport member of the HTLatencyStructure
provided in pHTLat below. (The Latency Counter
value is in units of 100 nanoseconds.) Only
ports set as receivers will obtain valid results
when using this mode. The latency counters start
running when a group transmit function starts,
and stops when a packet matching the contents
and at the position of data set in pHTLat.

pHTLat HTLatencyStructure* This structure sets the position, size and
contents of packet data that will stop latency counters when a
complete match occurs, and holds the ulReport value when
retrieving the latency measurements on each port. See the
definition of HTLatencyStructure below.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one hub IDs start at 0. See Hub Numbering
with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Note - When using this command, VFD 3 of the transmitting port, and the Triggers of
any receiving ports are utilized. [Also, on 10MB cards, the ByteCount counter function
is disabled.]

The latency counter is a special counter in a SmartCard. It is enabled when a card is
set in latency mode, and starts counting when a group transmit command [e.g.
HGGroupStart()] is issued. It stops when a packet is received which matches the
characteristics specified in the HTLatencyStructure when HT_LATENCY_RX or
HT_LATENCY_RXTX was issued.

The actual latency measurement is determined by subtracting the
HTLatencyStructure.ulReport values of the transmitting SmartCard from the receiver
SmartCard. This difference is the bit to bit latency measurement. Your program will
need to make any adjustments for cut-through vs. store and forward operations of the
device(s) attached to each port.

On 10MB cards, the ByteCount counter function is superseded with the Latency
counter function. When getting the counters from a 10MB card that is included in a
Latency measurement, the ByteCount value will reflect the raw Latency measurement.

Chapter 12
Function and Structure Reference

SmartLib User Guide 163

HTLatencyStructure
Parameter Description

int Range Size of the iData array to use, in bytes.

int Offset Offset in bits for the first bit of the iData trigger from the first bit of the
transmitted packet.

int iData[12] Actual data that will stop the latency counter.

unsigned long ulLatency Receives the latency value when using HT_LATENCY_REPORT. See
the HTLatency function for more details.

HTLayer3SetAddress
Description Configures the card to send/receive background traffic such as PING, SNMP, etc.

This command is not used to set up regular L3 test streams.

Syntax int HTLayer3SetAddress (Layer3Address* pLayer3Address, int iHub, int iSlot, int iPort)

Parameters pLayer3Address Layer3Address A pointer to the structure containing Layer 3
information such as IP address. See the definition of
Layer3Address below.

iHub int Identifies the hub where the card is located. Range: 0 (first hub)
through N (number of hubs – 1).
Remember to subtract one; hub IDs starts at 0. See Hub
Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the destination SmartCard.

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments Use HTLayer3SetAddress if you want to send additional frames during your test
process such as PING, SNMP, RIP, and Card ARP response.

This command is not necessary for defining test traffic. To set up test traffic (traditional
mode) see the NSCreateFrame series. To set up test traffic in the more powerful
SmartMetrics mode, see the Message Functions manual under your specific SmartCard
type.

For using this command with multiple SmartCards in Tcl see also: ETMake3DArray.

Layer3Address
Use this structure with the HTLayer3SetAddress function to set background traffic in addition to the
defined test streams. (Refer to the Message Functions manual for the steps to create Layer 3 streams.)

Parameter Description

unsigned char szMACAddress[6] Sets MAC address of the card.

unsigned char IP[4] Sets IP address of the card.

unsigned char Netmask[4] Sets Netmask for the card.

unsigned char Gateway[4] Sets Gateway address for the card.

unsigned char TargetAddress[4] Address to which PING and SNMP frames are sent.

Chapter 12
Function and Structure Reference

SmartLib User Guide164

Parameter Description

int iControl L3_CTRL_ARP_RESPONSES
Enables responses to all received ARP requests by
Tx of ARP response frames. Use with caution; not
recommended for online testing.

L3_CTRL_PING_RESPONSES
Enables Tx of PING frames.

L3_CTRL_SNMP_OR_RIP_RESPONSES
Enables Tx of SNMP/RIP frames.

The parameters below set the intervals at which frames are sent.

int iPingTime How often (in seconds) a PING frame is transmitted.
0 = no PING frames.

int iSNMPTime How often (in seconds) an SNMP frame is transmitted.
0 = no SNMP frames.

int iRIPTime How often (in seconds) a RIP frame is transmitted.
0 = no RIP frames.

int iGeneralARPResponse Obsolete.

HTMultiBurstCount
Description Sets up the number of bursts for transmitting out a SmartCard while in

MULTI_BURST_MODE.

Syntax int HTMultiBurstCount(long lVal, iHub, iSlot, iPort)

Parameters lVal long Specifies the burst count. Range: 1 to 16,777,215.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This instruction is only applied if HGTransmitMode, or HTTransmitMode has
selected MULTI_BURST_MODE. Use HGRun, HGStart, and HTRun to start the
transmission of the bursts.

Chapter 12
Function and Structure Reference

SmartLib User Guide 165

HTPortProperty
Description Determine the card type at the specified hub/slot/port.

Syntax int HTPortProperty(unsigned long *pulProperties, int iHub, int iSlot, int iPort)

Parameters pulProperties unsigned long * The contents of this address gets filled with the
value of the properties for the specified port. The value is filled with
the logical OR values below. This value can be ANDed against the
following to determine if the Port Property is present:

CA_SIGNALRATE_10MB 10MB capable

CA_SIGNALRATE_100MB 100MB capable

CA_DUPLEX_FULL Full Duplex capable

CA_DUPLEX_HALF Half Duplex capable

CA_CONNECT_MII MMI connector

CA_CONNECT_TP Twisted Pair connector

CA_CONNECT_BNC BNC connector

CA_CONNECT_AUI AUI connector

CA_CAN_ROUTE Routing capable

CA_VFDRESETCOUNT Resets VFD1 &2 counter

CA_SIGNALRATE_4MB 4MB capable

CA_SIGNALRATE_16MB 16MB capable

CA_CAN_COLLIDE Generates collisions

CA_SIGNALRATE_25MB 25MB capable

CA_SIGNALRATE_155MB 155MB capable

CA_BUILT_IN_ADDRESS Has a built in address

CA_HAS_DEBUG_MONITOR Allows Debug monitoring

CA_SIGNALRATE_1000MB 1 GB capable

CA_CONNECT_FIBER Fiber optic connector

CA_CAN_CAPTURE Has capture capability

CA_ATM_SIGNALING Performs ATM Signaling

CA_CONNECT_V35

CA_SIGNALRATE_8MB

CA_SIGNALRATE_622MB

CA_SIGNALRATE_45MB

CA_SIGNALRATE_34MB

CA_SIGNALRATE_1_544MB

CA_SIGNALRATE_2_048MB

CA_HASVFDREPEATCOUNT

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1). Remember to
subtract one since the hub identification starts at 0. See Hub Numbering with
Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in Hub) to
19 (last card in Hub).

iPort int Identifies the port on the card or module.

Chapter 12
Function and Structure Reference

SmartLib User Guide166

Return Value The return value is one of the following if the function executed successfully:
CT_NOT_PRESENT 0 (Card not present)

CT_ACTIVE 1

CT_FASTX 3

CT_TOKENRING 4

CT_VG 5

CT_GIGABIT 8

CT_ATM_SIGNALING 9

CT_WAN_FRAME_RELAY 10

CT_MAX_CARD_TYPE CT_WAN_FRAME_RELAY

A failure code of less than zero is returned if the function failed. See Appendix B for
error codes.

Comments For more detail about CA_VFDRESETCOUNT, see HT_VFD_Structure.

HTPortType
Description Determine the card type at the specified hub/slot/port.

Syntax int HTPortType(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is one of the following if the function executed successfully:
CT_NOT_PRESENT 0 (Card not present)

CT_ACTIVE 1

CT_FASTX 3

CT_TOKENRING 4

CT_VG 5

CT_GIGABIT 8

CT_ATM_SIGNALING 9

CT_WAN_FRAME_RELAY 10

CT_MAX_CARD_TYPE CT_WAN_FRAME_RELAY

A failure code of less than zero is returned if the function failed. See Appendix B for
error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 167

HTReadMII
Description Reads a specific MII Address/Register. This command applies only to 100Mbps cards.

Syntax int HTReadMII(unsigned int uiAddress, unsigned int uiRegister, unsigned short*
puiBits, int iHub, int iSlot, int iPort)

Parameters uiAddress unsigned int Specific address. Must be from 0 to 31

uiRegister unsigned int Specific register. Must be from 0 to 31

puiBits unsigned short* Bits read are returned here

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTResetPort
Description Resets the addressed Card to a default condition with all errors off.

Syntax int HTResetPort(int iResetType, int iHub, int iSlot, int iPort)

Parameters iResetType int Identifies the run mode of the board. Legal modes can be
conveyed using the following constants:

RESET_FULL Reset all card parameters including hardware
interface parameters (e.g. Token Ring Speed)

RESET_PARTIAL Reset all card parameters except hardware
interface parameters. This option can be used
for Token Ring cards, to keep the card in the
ring.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command is not implemented on the ATM and WAN (FR) card families at this
time.

Chapter 12
Function and Structure Reference

SmartLib User Guide168

HTRun
Description Sets up the run state of a card. A card can be set up to transmit a series of packets

(“RUN” state), transmit a single packet (“STEP” state) or stop transmission altogether
(“STOP” state). If the Burst mode has been set up to transmit a burst of packets (using
the HTTransmitMode command), then transitioning from “STOP” to “RUN” will cause
the specified number of packets to be transmitted.

Syntax int HTRun(int Mode, int iHub, int iSlot, int iPort)

Parameters Mode int Identifies the run mode of the board. Legal modes can be
conveyed using the following constants:

HTRUN **For Visual Basic use HTRUN_VALUE. **Transmit
continuously or send a burst of packets.

HTSTEP Transmit a single packet.

HTSTOP Halt transmission of packets.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Because Visual Basic does not distinguish by case, these values have been put in the
ETSMBAPI.TXT file to be used for the Mode parameter:

HTRUN_VALUE Transmit continuously or send a burst of
packets.

Note: Select a desired mode using HTTransmitMode before using the HTRUN
function. Otherwise the transmit mode will be the one used previously.

HTSelectReceive
Description Selects a port on a SmartBits that is to be used for receive data. The receive data from

this port is routed directly back to the SmartBits’s Port B for detailed analysis.

Syntax int HTSelectReceive(int iHub, int iSlot, int iPort)

Parameters iHub int Identifies the destination hub where the card is located. Can
range anywhere from 0 (first hub) to 3 (fourth hub).

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port of the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments If any of iHub, iSlot, iPort are equal to –1, the last selected port will be disabled.

If disabling HTSelectReceive and the last selected port is unknown, then the first
available active port will be selected, then deselected. No check is made as to whether
this card is currently transmitting. This function assumes that at least one other
SmartBits is attached to the SmartBits. It will be ignored by the SmartBits if there is not
another SmartBits present.

Chapter 12
Function and Structure Reference

SmartLib User Guide 169

HTSelectTransmit
Description Enables the Port B transmission of the SmartBits to be transmitted to the port specified

Transmission mode is determined by iMode.

Syntax int HTSelectTransmit(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Determines the function of the Port:

HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and have no effect on the SmartBits.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

NOTE: If any of iHub, iSlot, iPort are equal to –1, then the last selected
port will be disabled.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one SmartBits is attached to the SmartBits. It will
be ignored by the SmartBits if there is not another SmartBits present.

HTSendCommand
Description This function is used to save a small length of time by storing up commands on the

SMB, and then sending them to the cards all at once.

This function works in conjunction with the HTSeparateHubCommands. The default
setting used by HTSendCommand is HUB_DEFAULT_ACTION.

Syntax int HTSendCommand(int State)

Parameters State int If zero, all commands that can be queued up are queued up.

If non-zero, commands are not deferred; they are sent to the cards
as soon as they reach the SMB controller. Any commands that
have been deferred are sent first.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments It is strongly advised that this function not be called unless the time necessary to
handle each function separately is intolerably long.

Call HTSendCommand at the beginning of a long series of commands with “State” set
to 0. This causes the SMB to start buffering certain commands instead of forwarding
them separately to the cards. Before the last command, call this function once again
with “State” set to 1. This causes the SMB to then send all the deferred commands to
the cards at once, shotgun style.

NOTE: This function is not useful if commands are sent to the SMB across a network
that adds more time than the time from controller to card.

Chapter 12
Function and Structure Reference

SmartLib User Guide170

HTSeparateHubCommands
Description Determines how commands are synchronized across multiple hubs, including whether

GPS is used or not. Used in conjunction with HGRun, HGStart, HGStop, HGStep, and
HTSendCommand.

Syntax int HTSeparateHubCommands (int iFlag)

Parameters iFlag int This value determines how if and how SmartBits chassis are
synchronized.

HUB_GROUP_DEFAULT_ACTION
Enables a group action across SmartBits hubs. and
stacks (GPS is not used).

This setting allows a single command for stacks
of hubs linked by the expansion ports (see
comment).

Use this value to skip GPS sync time if GPS is
available but you don’t want to use it.

This value is the default for HGRun, HGStart,
HGStep, and HGStop.

HUB_GROUP_INDEPENDENT_ACTION
Enables a group start for each SmartBits hub. No
synchronization BETWEEN hubs.

This setting causes a separate command to be sent
for each SmartBits hub regardless of whether
there are stacks, expansion connection, or GPS.

This parameter was originally used to deal with
older equipment that could not perform a group
start across hubs.

HUB_GROUP_SYNC_ACTION
Enables GPS capability for a synchronized group
start across multiple hubs.

This setting allows a single command for stacks
of hubs linked by the expansion ports (see
comment).

ERROR CONDITIONS:
1 - GPS enabled on a “Slave stack” (expansion
cable plugged in the IN port.)
2 - One or more active “Links” (direct to the
PC)with neither expansion con nor GPS.

Return Value The return value shows the current value set:
0 = HUB_GROUP_DEFAULT_ACTION
1 = HUB_GROUP_INDEPENDENT_ACTION
2 = Reserved
3 = HUB_GROUP_SYNC_ACTION

Comments Expansion ports are available on the SMB 2000 or later. They are used to link one
stack of chassis to another.

Chapter 12
Function and Structure Reference

SmartLib User Guide 171

HTSetCommand
Description Sends a command to a card which accepts HTSetCommand() actions. The commands,

defines, and structure definitions for this command, for all card families, can be found in
the Message Functions manual, which covers all the card families that allow control
using HTSetCommand(), HTSetStructure(), and HTGetStructure(). The correct
combination of iType parameter values and the structure parameter enable the cards to
be set up in an elegant, efficient manner.

Syntax int HTSetCommand(int iType1,int iType2,int iType3,int iType4,void* pData,int iHub, int
iSlot, int iPort);

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See the Message functions manual for appropriate values for the iType and structure
parameters for HTSetCommand(), HTSetStructure(), and HTGetStructure().

HTDefaultStructure
Description Puts appropriate default values in the specified Message Function structure.

Syntax int HTSetStructure(int iType1,void* pData,int iSize,int iHub, int iSlot, int iPort);

Parameters iType1 int defines the command action.

pData void* Pointer to a structure (or an array of structures) that will
receive the default values.

iSize int indicates the size of pData. While in most cases this will be the
size of the structure, in some cases it is the size of an array of
structures or bytes. See the Message Functions manual for
clarification.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in
Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments This command is used in conjunction with the Message Functions HTSetCommand()
and HTSetStructure(). Select the desired iType1 and related structure from this manual.

To use this command, the defaults file (either factory-defined or customer-defined) must
be either local or in your Windows directory (for MS Windows systems) or home
directory (for UNIX systems). The factory-defined defaults file is named smartlib.dft.

Chapter 12
Function and Structure Reference

SmartLib User Guide172

HTSetSpeed
Description Sets the addressed port to the selected speed. The speed selected must be

appropriate to the addressed card type.

Syntax int HTSetSpeed(int iSpeed, int iHub, int iSlot, int iPort)

Parameters iSpeed int Determines the speed of the Port:

SPEED_10MHZ Sets a 10MB capable card to a 10 MHZ Signaling
rate (Ethernet)

SPEED_100MHZ Sets a 100MB capable card to a 100 MHZ Signaling
rate (Ethernet)

SPEED_4MHZ Sets a 4MB capable card to a 4 MHZ Signaling rate
(Token Ring)

SPEED_16MHZ Sets a 16MB capable card to a 16 MHZ Signaling
rate (Token Ring)

All other values are invalid and have no effect on the SmartBits.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in
Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments On 100Mbps Ethernet cards, speed auto-negotiation can be enabled by configuring the
MII registers. See the HTWriteMII() command for more information.

Chapter 12
Function and Structure Reference

SmartLib User Guide 173

HTSetStructure
Description Sends a command to a card which accepts HTSetStructure() actions. The commands,

defines, and structure definitions for this command can be found in the Message
functions manual, which covers all the card families that allow control using
HTSetCommand(), HTSetStructure(), and HTGetStructure(). The correct combination of
iType parameter values and the structure parameter enable the cards to be set up in an
elegant manner.

Syntax int HTSetStructure(int iType1,int iType2,int iType3,int iType4,void* pData,int iSize,int
iHub, int iSlot, int iPort);

Parameters iType1 int defines the command action. The value (and action) depends on
the card being addressed.

iType2 int value depends on card.

IType3 int value depends on card.

IType4 int value depends on card.

pData void* Pointer to a structure or an array containing the data to send.

iSize int indicates the size of the pData pointer which should be utilized.
While in most cases this will be the size of the structure, in some
cases it is the size of an array of structures or bytes. See the
Message Functions manual for clarification.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot in
Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See the Message Functions manual for appropriate values for the iType and structure
parameters for HTSetCommand(), HTSetStructure(), and HTGetStructure().

Chapter 12
Function and Structure Reference

SmartLib User Guide174

HTSetTokenRingAdvancedControl
Description Generates specialized frames for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingAdvancedControl(TokenRingAdvancedStructure
*pTRAdvancedStructure, int iHub, int iSlot, int iPort)

Parameters PTRAdvancedStructure
TokenRingAdvancedStructure* Points to a
TokenRingAdvancedStructure structure which contains all the
information required to transmit special control frames. See the
definition of TokenRingAdvancedStructure below.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command will cause ring operation to fail if not used with caution.

TokenRingAdvancedStructure
Parameter Description

int UseHoldingGap Token holding gap control.
1 Activate advanced gap control.
0 Do not issue advanced gap control.

int GapValue Time between frames when the token is not released between
frames.

Range: 1 to 1,600,000 (number of 100 nanosecond periods
between frames).

Default value: 1.

int GapScale Scale value.
NANO_SCALE Scale in nanoseconds
MICRO_SCALE Scale in microseconds
MILLI_SCALE Scale in milliseconds

int UseIntermediateFrameBits Sets the Intermediate frame bit in the EDEL field of the frame.
This bit is defined in the Token Ring Specification to indicate that
another frame is to follow immediately, with no token being
released between the frames. (See the Token Ring Architectural
Specification.)

1 Set Intermediate frame
0 Clear Intermediate frame

int UseAC Activates a user-specified Access Control field in transmitted
frames.

1 Set AC from ACdata field
0 Set AC from captured token

int ACdata Access Control byte value. Consult the Token Ring Architectural
Specification for information on the bit fields in this byte. This
byte is used to distinguish between tokens and frames and to
operate the Token Priority Protocol. Setting bits in this byte
incorrectly will probably cause ring errors.

Chapter 12
Function and Structure Reference

SmartLib User Guide 175

int AdvancedControl1 Advanced control byte 1. This byte gives the user control over
how the card connects to the ring on startup and how it responds
to ring errors.

Bit 3-2: Controls connection on startup.
0 No effect (previous settings in NVRAM are used).
1 Connects to the ring on startup (default).
2 Stays off the ring on startup.
3 Stays off the ring on startup and allows bit 1 to control

the connection.

Bit 1: Connection control
0 Deinserted
1 Inserted

Bit 0: ‘Halt on Error’ Stops card from transmitting when it
receives a Beacon, Claim or Purge frame.

0 Inactive
1 Active

int AdvancedControl2 Advanced control byte 2.

Bit 4: Internal Loopback
0 Off
1 On

Bit 3: Test Mode. This mode is used to simulate an Active
Monitor when running as a Station so that the card can be used
standalone to test passive Token Ring components.

0 Off
1 On

unsigned long AReserved1 Reserved.

unsigned long AReserved2 Reserved.

Chapter 12
Function and Structure Reference

SmartLib User Guide176

HTSetTokenRingErrors
Description Generates traffic with error frames for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingErrors(int ErrorTrafficRatio, int iTRErrors, int iHub, int iSlot, int
iPort)

Parameters ErrorTraficRatio int Specifies the error traffic ratio in tenths of seconds. Range: 0 to
1000. A value of 0 will turn off error generation.

iTRErrors int Specifies the type of frame errors to generate. Value can be a
combined OR of the following defines:

TR_ERR_FCS FCS errors

TR_ERR_FRAME_COPY Frame copy errors

TR_ERR_FRAME_BIT Frame Bit errors

TR_ERR_FRAME_FS FS Frame errors

TR_ERR_ABORT_DELIMITER Abort delimiter errors

TR_ERR_BURST Burst errors

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments The number in the ratio is nominally in tenths of a percent. However, as it is
rationalized to a count the precision will be poor at large percentage values.

HTSetTokenRingLLC
Description Configures LLC frame for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingLLC(TokenRingLLCStructure *pTRLStructure, int iHub, int iSlot, int
iPort)

Parameters pTRLStructure TokenRingLLCStructure* Points to a TokenRingLLCStructure
(see definition below) which contains all the information required to
preform LLC Type 1 frames. See the definition of
TokenRingLLCStructure below.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments A TokenRing MAC header has to be defined first for LLC to take effect.

Chapter 12
Function and Structure Reference

SmartLib User Guide 177

TokenRingLLCStructure
Parameter Description

int UseLLC Logical Link Control (LLC).
0 No LLC added to MAC frame header.
1 Add LLC to the MAC frame header.

int DSAP Destination Service Access Point.
Range: 0 to 255 (0x00 to 0xFF).

int SSAP Source Service Access Point.
Range: 0 to 255 (0x00 to 0xFF).

int LLCCommand Sets the type of LLC field to be added to the frame header.
0 TEST frame set to ‘Poll’
1 SNAP frame (used to encapsulate an Ethernet

frame from the ‘type’ field)

HTSetTokenRingMAC
Description Configures TokenRing MAC header for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingMAC(TokenRingMACStructure *pTRMStructure, int iHub, int iSlot,
int iPort)

Parameters pTRMStructure TokenRingMACStructure* Points to a TokenRingMACStructure
which defines a preformed MAC header. See the definition of
TokenRingMACStructure below.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

TokenRingMACStructure
Parameter Description

int UseMAC MAC header control. The MAC header consists of AC and FC
bytes, followed by MAC destination and source addresses, followed
by optional LLC control, followed by optional SourceRouteAddress
information. AC and FC are always prepended to frame data.

0 No MAC header prepended to frame data.
1 Prepend a MAC header to the frame data.

int Stations Reserved. Must be set to 1.

int MACSrc[6] Source MAC Address.

int MACDest[6] Destination MAC Address.

int FramesPerToken Number of frames to be transmitted for each token.

Range: 1 to 340 (0x01 to 0x154).

Chapter 12
Function and Structure Reference

SmartLib User Guide178

int FrameControl This is the value of the Frame Control byte put on the front of each
frame. This byte is independent of the fill pattern and any
preformed header may be overwritten by a VFD field.

This byte is defined fully in the Token Ring Architectural
Specification and should not be altered from the default value of
0x40 (TRFC_DEFAULT) without knowledge of the consequences.

Several other values are defined in the header file:
TRFC_DEFAULT Standard frame
TRFC_PCF_BEACON Beacon
TRFC_ PCF_CLAIMTOKEN Claim Token
TRFC_ PCF_RINGPURGE Ring Purge
TRFC_ PCF_AMP Active Monitor Present
TRFC_ PCF_SMP Standby Monitor Present
TRFC_ PCF_DAT Duplicate Address Test
TRFC_ PCF_RRS Remove Ring Station

HTSetTokenRingProperty
Description Configures ring operation characteristics for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingProperty(TokenRingPropertyStructure *pTRPStructure, int iHub,
int iSlot, int iPort)

Parameters pTRPStructure TokenRingPropertyStructure* Points to a
TokenRingPropertyStructure (see definition below) which contains
all the information required to configure ring operation.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This command defines card properties retained in non-volatile storage. Do not alter
these parameters on a live ring; this can cause ring malfunction (usually Beaconing by
other stations which might cause them to close down pending a hard reset).

TokenRingPropertyStructure
Parameter Description

int SpeedSetting Ring speed.
TR_SPEED_4MBITS 4 Mbits/Sec
TR_SPEED_16MBITS 16 Mbits/Sec

int EarlyTokenRelease Allows a station to transmit a token immediately after a frame was
sent. This feature only applies to a ring running at 16 Mbps.

TR_TOKEN_DEFAULT Do not allow
TR_TOKEN_EARLY_RELEASE Allow

int DuplexMode Half duplex or full duplex.
TR_DUPLEX_HALF TKP Half duplex
TR_DUPLEX_FULL TXI Full duplex

int DeviceOrMAUMode Configures the TokenRing SmartCard to be a port or a station.
TR_MODE_MAU Port
TR_MODE_DEVICE Station

Chapter 12
Function and Structure Reference

SmartLib User Guide 179

HTSetTokenRingSrcRouteAddr
Description Configures Source Route Address (SRA) for the selected TokenRing SmartCard.

Syntax int HTSetTokenRingSrcRouteAddr(int UseSRA, int *piData, int iHub, int iSlot, int iPort)

Parameters UseSRA int specifies if a SRA field is included in a TokenRing frame.

0 No SRA defined
1 Use SRA filed defined in piData parameter.

piData int * Points to an array of int which contains the Source Route
Address information. The maximum length of this array is 32 and
the length information is encoded in the lower 5 bits of the first byte
of this array of SourceRouteAddress information.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments This field is part of a pre-formed header and so the MAC header has to be active for it
to be active. The data in this field will be parsed by the card to determine the size of
the source routing field to use and the maximum frame size to transmit. (See the
Token Ring Architectural Reference for details of how to code this field.)

HTSetVGProperty
Description Configures ring operation characteristics for the selected VG SmartCard.

Syntax int HTSetVGProperty(VGCardPropertyStructure *pVGPStructure)

Parameters pVGPStructure VGCardPropertyStructure* Points to a VGCardPropertyStructure
(see definition below) which contains all the information required to
configure Card.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the TokenRing SmartCard is located.
Range: 0 (first slot in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide180

VGCardPropertyStructure
Parameter Description

int EndOrMasterNode Allows a VG SmartCard to be configured as an End node or a
Master node.

VG_CFG_END_NODE End Node
VG_CFG_MASTER Master Node

int PriorityPromotion Priority promotion.
VG_CFG_NO_PRIO_PROMO No promotion
VG_CFG_PRIORITY_PROMO Yes

int EtherNetOrTokenRing Configures the VG SmartCard to be operated in Ethernet or in
TokenRing.

VG_CFG_ETHERNET Ethernet
CG_CFG_TOKENRING TokenRing

HTSlotOwnership
Description Identifies the ownership status of a specified slot in a multi-user environment.

Syntax int HTSlotOwnership(int iHub, int iSlot)

Parameters iHub int Identifies the hub where the card or module is installed.
Range: 0 (first hub) through N (number of hubs–1). Hub IDs start
at 0.

iSlot int Identifies the slot where the card or module is installed.

Range: 0 (first slot) through last slot.

Return Value If the function executed successfully, the return value shows the current owner of the
specified slot.

0 SLOT_RESERVED_BY_OTHER

1 SLOT_RESERVED_BY_USER

2 SLOT_AVAILABLE

A failure code (less than zero) is returned if the function failed. See Appendix B for
error codes.

Comments This command may be used only with SmartBits 6000/600 chassis.

Use this function to determine the current reservation state of the specified slot. It will
return different values depending on whether the slot is reserved by the current user,
reserved by a different user, present but not reserved, or not present.

Chapter 12
Function and Structure Reference

SmartLib User Guide 181

HTSlotRelease
Description Releases a slot from use in a multi-user environment, making it available for

reservation by other users.

Syntax int HTSlotReserve(int iHub, int iSlot)

Parameters iHub int Identifies the hub where the card or module is installed.
Range: 0 (first hub) through N (number of hubs–1). Hub IDs start
at 0.

iSlot int Identifies the slot where the card or module is installed.

Range: 0 (first slot) through last slot.

Return Value The return value is >= 0 if the function executed successfully. A failure code (less than
zero) is returned if the function failed. See Appendix B for error codes.

Comments This command may be used only with SmartBits 6000/600 chassis.

This function releases a slot, marking it as free to be reserved using the
HTSlotReserve function.

Releasing a card (slot) has no effect on card configuration.

Releasing a card that the user does not already have reserved is legal and will return a
code indicating success.

HTSlotReserve
Description Marks the named slot as reserving exclusive read/write access to the issuing user, in a

multi-user environment.

Syntax int HTSlotReserve(int iHub, int iSlot)

Parameters iHub int Identifies the hub where the card or module is installed.
Range: 0 (first hub) through N (number of hubs–1). Hub IDs start
at 0.

iSlot int Identifies the slot where the card or module is installed.

Range: 0 (first slot) through 5 (last slot).

Return Value The return value is >= 0 if the function executed successfully. A failure code (less than
zero) is returned if the function failed. See Appendix B for error codes.

Comments This command may be used only with SmartBits 6000/600 chassis.

This function reserves a slot (which may contain more than one port) for exclusive use
by the link (user) on which the command was invoked. Once the slot has been
reserved, no other user may reserve the slot until it is released, either by the reserving
user or the super user.

The controller cannot know whether or not multiple TCP/IP links come from the same
library instance. For this reason, reservations to a controller on one link are not
accessible from the same library instance using a second link to the same controller.

Reserving a card (slot) has no effect on card configuration.

Reserving a card that the user has already reserved is legal and will return a code
indicating success.

Chapter 12
Function and Structure Reference

SmartLib User Guide182

HTSymbol
Description Generates symbol error for the 100 Mbits card. The port can be set up to transmit a

series of packets that generates an invalid wave form data pattern. This command
applies only to 100 Mbps cards.

Syntax int HTSymbol(int Mode, int iHub, int iSlot, int iPort)

Parameters Mode int Identifies the symbol mode of the board. Legal modes can be
conveyed using the following constants:

SYMBOL_OFF Turn off symbol errors

SYMBOL_ON Turn on symbol errors

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide 183

HTTransmitMode
Description Indicates to the selected port how to control the transmission of packets when running.

Syntax int HTTransmitMode(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Indicates the mode of operation when transmitting packets
according to the following defines:

CONTINUOUS_PACKET_MODE

Sets port to transmit single packets continuously.
SINGLE_BURST_MODE

Sets port to transmit a single burst of packets, then stop.
MULTI_BURST_MODE

Sets port to transmit multiple bursts of packets, indicated by the
HxMultiBurstCount command, with each burst being separated by
the amount specified in the HxBurstGap command, and then stop.
(For the above commands, “Hx” indicates HT or HG.)

CONTINUOUS_BURST_MODE

Sets port to repetitively send bursts of packets with each burst
being separated by the amount specified in the HxBurstGap
command.

ECHO_MODE Sets port to transmit a single packet upon receiving a Receive
Trigger event. The packet transmitted will match the programmed
parameters of the port addressed.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

Chapter 12
Function and Structure Reference

SmartLib User Guide184

HTTrigger
Description Sets up the triggering mechanism for a card. HTTrigger specifies the trigger number (1

or 2), the operational configuration, trigger pattern range, trigger pattern offset, and
trigger pattern data.

Syntax int HTTrigger(int iTrigId, int iConfig, HTTriggerStructure* phtTStruct, int iHub, int iSlot,
int iPort)

Parameters iTrigId int Identifies the trigger source. There are two possible triggers on
each card. They are identified as follows:

HTTRIGGER_1 Trigger 1
HTTRIGGER_2 Trigger 2

iConfig int There are three possible types of configurations for the triggers
on the cards:

HTTRIGGER_OFF Disables the triggering mechanism for TrigId
HTTRIGGER_ON Enables the triggering mechanism for TrigId
HTTRIGGER_DEPENDENT Enables the triggering mechanism for TrigId

after the other trigger has triggered.

phtTStruct HTTriggerStructure* A structure containing the trigger pattern,
offsets and ranges. Note that the maximum range is 6 bytes, and.
though the range is specified in bits., the specified number is
rounded up to the nearest byte multiple. i.e.; the cards can only
trigger on patterns that are a length that is a multiple of 8 bits. The
offset ranges from 1 to 12,112 bits (specified in bits). See the
definition of HTTriggerStructure on page 141.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments It is possible to misconfigure triggers when using HTTRIGGER_DEPENDENT.

A TrigId set to HTTRIGGER_DEPENDENT is to be active after the other TrigId trigger
has occurred. So, if trigger 2 is set to be dependent on trigger 1:

A properly configured trigger dependent combination would be (the order of the
commands does matter):

HTTrigger(HTTRIGGER_1,HTTRIGGER_ON,&TStruct,0,0,1)
HTTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct,0,0,1)

A misconfigured trigger combination would be:
HTTrigger(HTTRIGGER_1,HTTRIGGER_OFF,&TStruct,0,0,1)
HTTrigger(HTTRIGGER_2,HTTRIGGER_DEPENDENT,&TStruct,0,0,1)

Here, trigger 2 will never fire because trigger 1 is off.

Chapter 12
Function and Structure Reference

SmartLib User Guide 185

HTVFD
Description Sends VFD information to a card.

Syntax int HTVFD(int iVFDId, HTVFDStructure* phtHStruct,int iHub, int iSlot, int iPort)

Parameters iVFDId int Identifies the VFD pattern being addressed. There are a total of
three VFD patterns. They are identified as shown below:

HVFD_1 VFD Pattern 1

HVFD_2 VFD Pattern 2

HVFD_3 VFD Pattern 3

phtHStruct HTVFDStructure* pointer to a structure that holds VFD
information for use with a card. This structure holds the VFD
Configuration, Range, Offset and Pattern. See the definition of
HTVFDStructure below.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

HTVFDStructure
Parameter Description

int Configuration Determines the capabilities of the VFD being implemented. Select the
constant that applies.

Configurations specific to VFD1 and VFD2 are:
HVFD_NONE VFD off
HVFD_RANDOM Random pattern
HVFD_INCR Incrementing pattern
HVFD_DECR Decrementing pattern
HVFD_STATIC Static pattern

Configuration options for VFD3 are:
HVFD_NONE VFD3 off
HVFD_ENABLED VFD3 on

NOTE: VFD3 operates differently from 1 and 2. It is a large buffer that
can be used in segments to create more complex patterns than
increment or decrement.

int Range Determines the length of the VFD field that will be laid into the frame.

For VFD1 and VFD2:
To specify the length in byte units, use a positive integer from 1 to 6. To
specify the length in bit units, use a negative integer from –1 to
–48. The minus symbol flags the library that the number represents bits
instead of bytes. Since 100Mbps Ethernet cards send traffic in
increments of four bits, a range that is not in multiples of four will be
rounded up to the nearest nibble for these cards.

Chapter 12
Function and Structure Reference

SmartLib User Guide186

Parameter Description

For VFD3:
The length of VFD3 is set in bytes. The byte length is from 1 to 2047.

int Offset Determines the bit number in the frame where VFD is overlaid.
Measurement begins immediately after the preamble.

Range: 0 to 12,112.

For a 100Mbps Ethernet SmartCard, values that are not multiples of four
are rounded up to the next 4 bit (nibble) increment.

int Data Points to an array of integers that constitute the pattern for the VFD.

For Visual Basic, use int*iData instead of int*Data.

For VFD1 and VFD2 only:
Elements values are entered into the array with the most significant bit
first. For example:

iData[0] 0
iData[1] 1
iData[2] 2
iData[3] 3
iData[4] 4
iData[5] 5

Creates the VFD pattern: 543210[BS18]

int DataCount This value has different uses for VFD1 or 2 and for VFD3.

For VFD1 and VFD2:

The DataCount is used with Configuration to limit the number of patterns
generated.

DataCount is the Cycle-count (number of different patterns that will be
generated before being repeated).

Example 1:

If Configuration = HVFD_INCR
And if DataCount = 6
Results in six VFD patterns. The initial pattern is used in the first frame.
The next five values increment, creating a series of five new patterns.
The initial pattern is then used again, and the cycle repeats itself.

Example 2:

If Configuration = HVFD_INCR
And if DataCount = 0
The VFD increments the full value that the Range allows, and then
cycles over again.

For VFD3:

The buffer size of the Data array. Used in combination with the Range to
determine how often a pattern is repeated. For example, if the DataCount
is 24 and the Range is 6, there will be four six byte patterns before the
first is repeated.

For Gigabit Ethernet cards, the byte length is from 1 to 16384. For all
other SmartCards, the byte length is from 1 to 2047[BS19].

Chapter 12
Function and Structure Reference

SmartLib User Guide 187

HTWriteMII
Description Writes a specific MII Address/Register. This command applies only to 100 Mbps cards.

Syntax int HTWriteMII(unsigned int uiAddress, unsigned int uiRegister, unsigned short uiBits,
int iHub, int iSlot, int iPort)

Parameters uiAddress unsigned int Specific address. Must be from 0 to 31.

uiRegister unsigned int Specific register. Must be from 0 to 31.

uiBits unsigned short Bit value to write to address/register.

iHub int Identifies the hub where the is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Hub Numbering with Multiple Chassis in Chapter 2.

iSlot int Identifies the slot where the card is located. Range: 0 (first slot
in Hub) to 19 (last card in Hub).

iPort int Identifies the port on the card or module.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments None

NSCreateFrame
Description Automates and simplifies creation of frames with the use of the structure:

FrameSpec_Type.

Syntax long NSCreateFrame(FrameSpec_Type* framespec)

Parameters framespec FrameSpec_Type* pointer to a structure that holds information
about the type of frame(s) to be created. Elements shown below
can have a wide variety of values. For values of iEncap, iSize,
iProtocol, and iPattern, see the definition of FrameSpec_Type
below.

iEncap The type of frame (Ethernet, ATM, etc.)

iSize The size of the frame. If iSize value is either
too large or too small (based on selected iEncap
and iProtocol values), an error value is
returned.

iProtocol The type of Layer 3 protocol to use, e.g., IP,
ARP, None, etc.

iPattern The background pattern to use. This pattern is
used to pad the frame (to match the iSize value)
after all specified bytes have been inserted.

Return Value If successful, a Frame ID is returned. This ID represents a single frame prototype. Use
this ID to put the frame in the card buffer with HTFrame.

If failure occurs, a negative integer is returned. See Appendix B for error codes.

Comments For a custom payload (background pattern), set the iPattern to PAT_CUST, and
then create the custom pattern with NSSetPayload.

Once a frame is created, put it into the card transmit buffer using the HTFrame
function. (This function is similar to HTFillPattern.)

Related functions: NSDeleteFrame, NSCreateFrameAndPayload, and
NSModifyFrame.

Since NSCreateFrame functions are intended for “layer 2” mode, VTEs and Signature
fields are not part of these frames.

Chapter 12
Function and Structure Reference

SmartLib User Guide188

FrameSpec_Type
This structure is used with NSCreateFrame and NSCreateFrameAndPayload.

Parameter Description

int iEncap Type of frame encapsulation used. In addition to iEncap, this
information determines the value of the iSize variable.

ENCAP_ETHERNET
ENCAP_ATM_PVC
ENCAP_ATM_SVC_SNAP
ENCAP_ATM_SVC_LANE802_3
ENCAP_ATM_SVC_LANE802_5
ENCAP_ATM_SVC_CLASSICAL_IP
ENCAP_TOKEN_RING
ENCAP_BRIDGE_FR Frame Relay
ENCAP_ROUTE_FR Frame Relay

int iSize Specifies the size of the frame prototype being created. The
maximum size is 2K bytes. Set the frame size to be large enough
to contain the encapsulation information and protocol header. Any
extra space left over will be filled by the iPattern value.

CRC and Preamble are not included in this frame size.

An example of frame size is:

(Encapsulation w/ 2 bytes for protocol added once protocol is
selected) + (protocol) +(optional payload bytes)

int iProtocol Specifies what type of protocol header is used. In addition to
iEncap, this information determines the value of the iSize variable.

FRAME_PROTOCOL_NULL No protocol header used. The
background-fill pattern pads
the frame after the
encapsulation bytes.

FRAME_PROTOCOL_IP
FRAME_PROTOCOL_UDP
FRAME_PROTOCOL_TCP
FRAME_PROTOCOL_ARP
FRAME_PROTOCOL_RARP
FRAME_PROTOCOL_IPX
FRAME_PROTOCOL_ICMP

Chapter 12
Function and Structure Reference

SmartLib User Guide 189

NSCreateFrameAndPayload
Description Automates and simplifies creation of frames with the use of the structure:

FrameSpec_Type.

For use only with a customized payload (fill pattern). For predefined SmartLib payload,
use NSCreateFrame.

Syntax long NSCreateFrameAndPayload(FrameSpec_Type* framespec, int iPayloadSize,
unsigned char* pucPayload)

Parameters framespec FrameSpec_Type* pointer to a structure that holds information
about the type of frame(s) to be created. Structure elements
shown below can have a wide variety of values. For values of
iEncap, iSize, iProtocol, and iPattern, see the definition of
FrameSpec_Type above.

iEncap The type of frame (Ethernet, ATM, etc.)

iSize The size of the frame. If iSize value is either
too large or too small (based on selected iEncap
and iProtocol values), an error value is
returned.

iProtocol The type of Layer 3 protocol to use, e.g., IP,
ARP, None, etc.

iPattern The background pattern to use. For this function
the only valid value is: PAT_CUST.

iPayloadSize int Specifies the length of the payload (fill pattern) array.

pucPayload unsigned char Pointer to user-created array containing the
customized payload (fill pattern).

Return Value If successful, a Frame ID is returned. This ID represents a single frame prototype. Use
this ID to put the frame in the card buffer using the HTFrame function. (This function is
similar to HTFillPattern.)

If failure occurs, a negative integer is returned. See Appendix B for error codes.

Comments If you want to use a pre-created fill pattern, use NSCreateFrame.

A second way to accomplish the same task (a frame with a custom fill pattern) is to
use the NSCreateFrame function, using PAT_CUST for the iPattern parameter, and
then defining the custom pattern with NSSetPayload.

Once a frame is created, put it into the card transmit buffer using HTFrame. (This
function is similar to HTFillPattern.)

Related functions: NSDeleteFrame and NSModifyFrame.

Chapter 12
Function and Structure Reference

SmartLib User Guide190

NSDeleteFrame
Description Deletes a single frame prototype specified by the lFrameID.

The frame prototype is identified by the Frame ID (which is returned by
NSCreateFrame and NSCreateFrameAndPayload).

Syntax long NSDeleteFrame (long iFrameID)

Parameters lFrameID long The ID number is unique to each frame prototype, and is
returned when a frame is created.

Use the iFrameID value to put the frame in the card buffer with
HTFrame, and to delete the frame from the SmartLib buffer with
NSDeleteFrame.

Return Value The return value is >= 0 if the function executed successfully. A failure value of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Use NSDeleteFrame to clear the Prototype From the SmartLib buffer once that type of
frame is no longer needed.

Related functions: HTFrame, NSCreateFrame, NSSetPayload,
NSCreateFrameAndPayload, and NSModifyFrame.

NSDisableAutoDefaults
Description (TCL INTERFACE ONLY) Turns off automated defaults so that HTSetDefault must be

called to use default values for Message Function parameters.

Syntax NSDisableAutoDefaults

Parameters

Return Value 0

Comments This command requires no parameters. See Working with Tcl in this manual for more
information.

See also: NSEnableAutoDefaults

NSEnableAutoDefaults
Description (TCL INTERFACE ONLY) Used at the top of a script. Once called, default values are

automatically supplied for Message Functions that require settings.

Syntax NSEnableAutoDefaults

Parameters

Return Value 1

Comments This command requires no parameters. See Working with Tcl in this manual for more
information.

See also: NSDisableAutoDefaults

NSGetMaxHubs
Description Returns the maximum number of hubs per stack. This number is 4 whether the

connection is a stack of SMB 2000s or an SMB 6000.

Syntax int NSGetMaxHubs (void)

Parameters

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Replaces the constant MAX_HUBS. This value is useful for allocating memory.

Chapter 12
Function and Structure Reference

SmartLib User Guide 191

NSGetMaxPorts
Description Returns the maximum number of ports per stack.

Syntax int NSGetMaxPorts (void)

Parameters

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Replaces the constant MAX_PORTS. This value is useful when allocating memory.

NSGetMaxSlots
Description Returns the maximum number of slots per stack.

Syntax int NSGetMaxSlots (void)

Parameters

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Replaces the constant MAX_SLOTS. This value is useful when allocating memory.

NSGetNumHubs
Description Returns the number of hubs possible for the hub type.

Syntax int NSGetNumHubs (void)

Parameters

Return Value The return value is >= 0 if the function executed successfully. A failure code of less than
zero is returned if the function failed. See Appendix B for error codes.

Comments The number returned is 4 for SMB-2000, 1 for SMB-6000, 600, and 200.

NSGetNumPorts
Description Returns the number of ports available for a given card. For SmartCards, there will be a

single port per card. For SmartModules there will be multiple ports.

Syntax int NSGetNumPorts(int iHub, int iSlot);

Parameters iHub int Specifies which hub to query. The range is 0 (first hub) through N (the
number of available hubs –1).

iSlot int Specifies which slot to query. The range is 0 (first hub) through N (the
number of available hubs –1).

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments

Chapter 12
Function and Structure Reference

SmartLib User Guide192

NSGetNumSlots
Description Returns the number of slots possible for the specified hub (this does Not return the

number of cards available.

Syntax int NSGetNumSlots(int iHub);

Parameters iHub int Specifies which hub to query. The range is 0 (first hub) through N (the
number of available hubs –1).

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments

NSModifyFrame
Description Modifies part of a frame created by NSCreateFrame or NSCreateFrameAndPayload. It

can be used for a series of frames based on an original frame prototype.

Syntax Long NSModifyFrame (long lFrameID, int iIdentifier, unsigned char* pucBytes, int
iNumBytes)

Parameters lFrameID long The FrameID number is unique for each frame prototype. It is
returned by NSCreateFrame and NSCreateFrameAndPayload.

iIdentifier int This value specifies which portion of the frame to modify. For
example, you might modify the Destination MAC, or the Time-to-
Live, etc. By selecting an element, you do not need to know it’s
offset, only its size and content. Some elements can modify “Only”
one type of frame, while others have multiple uses defined by “All
Followed.”

FRAME_VERSION “ONLY” IP version.
FRAME_HEADER_LENGTH “ALL FOLLOWED:” IP length, IPX length.
FRAME_UDP_HEADER_LENGTH “ONLY” UDP length.
FRAME_TCP_HEADER_LENGTH “ONLY” TCP length.
FRAME_TYPE_SERVICE “ONLY” IP type of service.
FRAME_TOTAL_LENGTH “ONLY” IP total length.
FRAME_SEQUENCE “ALL FOLLOWED:” IP sequence, ICMP sequence.
FRAME_UDP_SEQUENCE “ONLY” UDP sequence.
FRAME_TCP_SEQUENCE “ONLY” TCP sequence.
FRAME_FLAGS “ONLY” IP flags.
FRAME_FRAGMENTS_OFFSET “ONLY” IP fragment and offset.
FRAME_TIME_TO_LIVE “ONLY” IP time to live.
FRAME_PROTOCOL “ONLY” IP protocol.
FRAME_HEADER_CRC “ALL FOLLOWED:” IP checksum, IPX checksum.
FRAME_UDP_HEADER_CRC “ONLY” UDP checksum.
FRAME_TCP_HEADER_CRC “ONLY” TCP checksum.
FRAME_DST_IP_ADDR “ANY” frame Destination IP Address.
FRAME_SRC_IP_ADDR “ANY” frame Source IP Address.
FRAME_SRC_PORT “ANY” frame Source Port number
FRAME_DST_PORT “ANY” frame Destination Port number.
FRAME_ACKNOWLEDGE “ONLY” TCP Acknowledge number.
FRAME_RESERVED “ONLY” TCP reserved bits.
FRAME_URG_BIT “ONLY” TCP URG bit.
FRAME_ACK_BIT “ONLY” TCP ACK bit.
FRAME_PSH_BIT “ONLY” TCP PSH bit.
FRAME_RST_BIT “ONLY” TCP RST bit.
FRAME_SYN_BIT “ONLY” TCP SYN bit.
FRAME_FIN_BIT “ONLY” TCP FIN bit.
FRAME_WINDOW_SIZE “ONLY” TCP window size.
FRAME_URGENT_POINTER “ONLY” TCP urgent pointer.
FRAME_HARDWARE_TYPE “ALL FOLLOWED:” ARP, RARP hardware type.
FRAME_HEADER_TYPE “ALL FOLLOWED:” ICMP Header type, IPX Header Type.
FRAME_HARDWARE_SIZE “ALL FOLLOWED:” ARP, RARP hardware size.
FRAME_PROTOCOL_TYPE “ALL FOLLOWED:” ARP, RARP protocol type.
FRAME_PROTOCOL_SIZE “ALL FOLLOWED:” ARP, RARP protocol size.
FRAME_OPERATION “ALL FOLLOWED:” ARP, RARP operations.
FRAME_HEADER_CODE “ONLY” ICMP Header codes.
FRAME_IDENTIFIER “ONLY” ICMP Identifier.
FRAME_SEN_MAC_ADDR “ANY” protocol MAC sender address.
FRAME_REC_MAC_ADDR “ANY” protocol MAC receiver address.
FRAME_HOP “ONLY” IPX Hop
FRAME_DST_SOCKET “ONLY” IPX destination socket.
FRAME_SRC_SOCKET “ONLY” IPX source socket.
FRAME_ICMP_HEADER_CRC “ONLY” ICMP Header checksum.

Chapter 12
Function and Structure Reference

SmartLib User Guide 193

PucBytes unsigned char* Pointer to the replacement bytes used to modify
the frame component.

INumBytes int Length of new segment (pucBytes). An error will result if this
value does not match the number of bytes being replaced.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments Use this function after creating a frame with either NSCreateFrame or
NSCreateFrameAndPayload. Related functions: HTFrame and HSDeleteFrame.

NSSetDefaultsFile
Description Specifies which file to use for default values of Message Function parameters.

Syntax int NSDefaultsFile(char* szFileName);

Parameters szFileName char* Pointer to a string which can either be the name of the
defaults file to use, or the full path of the defaults file.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See also: HTDefaultStructure and NSEnableAutoDefault

NSSetPayload
Description Used in conjunction with NSCreateFrame; this function configures the customized

payload (background pattern).

Syntax Long NSSetPayLoad (long lFrameID, int iSize, unsigned char* pucPayload)

Parameters LFrameID long The FrameID number is unique for each frame prototype. It is
returned by NSCreateFrame and NSCreateFrameAndPayload.

iSize int The size of the array specifying the payload.

pucPayload unsigned char* The pointer to the array specifying the payload
(the background pattern).

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments NSSetPayLoad is only used in conjunction with NSCreateFrame, when the value of
iPattern (in the structure FrameSpec) is PAT_CUST. This causes NSCreateFrame to
not specify a background pattern.

Other pre-created payload patterns are available. However, when PAT_CUST is
specified, use NSSetPayLoad to specify a customized pattern.

You can also use NSCreateFrameAndPayLoad to accomplish the same task.

Related functions: HTFrame, NSDeleteFrame, and NSModifyFrame.

Chapter 12
Function and Structure Reference

SmartLib User Guide194

NSSetPortMappingMode
Description Sets the port mapping mode for a given link.

Syntax int NSSetPortMappingMode(int iMode)

Parameters iMode int Specifies which port mapping mode is set.: compatible (like the SMB-
2000) or Native for the SMB-6000 platform.

PORT_MAPPING_COMPATIBLE Maps like an SMB-2000
PORT_MAPPING_NATIVE Supports full SMB-6000 mapping.

Return Value The return value is >= 0 if the function executed successfully. A failure code of less
than zero is returned if the function failed. See Appendix B for error codes.

Comments NSSocketLink defaults to Native mode. ETLink and ETSocketLink default to
Compatible mode.

NSSocketLink
Description Establishes a connection to the specified SmartBits chassis using an IP socket

connection. Optionally reserves slots using the requested mode.

Note: Use a serial port connection to configure the IP address of the SMB-6000/600.
Refer to the SmartBits 600/6000 Getting Started for steps.

Syntax int NSSocketLink (char IPAddr, int iTCPPort, int iReserve)

Parameters szIPAddr char Specifies the IP address of the SmartBits chassis to which a
connection attempt should be made.

iTCPPort int TCP port number. The default value is 16385.

iReserve int Slots to reserve initially. Possible values are:

RESERVE_NONE Reserve none of the slots in the chassis.

RESERVE_ALL Reserve all the slots in the chassis.

Return Value The return value is >= 0 if the function executed successfully. A failure code (less than
zero) is returned if the function failed. See Appendix B for error codes.

Comments This command may be used only with SmartBits 6000/600 chassis.

This function connects to the SmartBits chassis using the provided IP address and
port ID. The IP address must be defined as a dotted-decimal string. Host names are
not resolved.

The iReserve parameter controls the initial reservation of slots as follows:
RESERVE_NONE causes no slots to be reserved after the link is established.
RESERVE_ALL causes all slots to be reserved after the link is established.

Once connected, the port-mapping mode is set to PORT_MAPPING_NATIVE.

Linking to the same chassis more than once will succeed for a system that is multi-
user capable (for Release 3.06b, only the SmartBits 6000/600). Attempting to link
twice to a system that is not multi-user capable, or to the serial port on a multi-user-
capable system, will fail.

After linking, the hub number of the first chassis on the link will be equal to the hub
number of the previous link’s first chassis plus 4.

Chapter 12
Function and Structure Reference

SmartLib User Guide 195

NSUnLink
Description Severs a connection to the current link.

Syntax int NSUnLink ()

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code (less than
zero) is returned if the function failed. See Appendix B for error codes.

Comments This function closes the current link, which may be either the most recently established
link or the last link specified by an ETSetCurrentLink command or an
ETSetCurrentSockLink command.

After unlinking, all chassis with hub numbers higher than hubs in the severed link will
have their hub numbers reassigned. Each new hub number will be decreased by 4
from its previous value.

Chapter 12
Function and Structure Reference

SmartLib User Guide196

SmartLib User Guide 197

Appendix A:
Original Functions for the ET-1000 Only

Some Original Functions apply only to the ET-1000 chassis, a precursor to the current SmartBits
chassis. They are supported by the library but are not generally used. This appendix lists and
describes these ET-1000-only functions (all begin with the prefix ET).

The table below is a summary. Detailed descriptions follow the table.

Original Functions for the ET-1000 Only

ETAlignCount ETGetGapScale

ETBNC ETGetJET210Mode

ETBurst ETGetLNM

ETCaptureParams ETGetPreamble

ETCaptureRun ETGetReceiveTrigger

ETCollision ETGetRun

ETDataLength ETGetSel

ETDataPatternx ETGetSwitch

ETDribbleCountx ETGetTransmitTrigger

ETGap ETGetVFDRun

ETGapScale ETLNM

ETGetAlignCount ETLoopback

ETGetBNC ETMFCounter

ETGetBurstCount ETPreamblex

ETGetBurstMode ETReceiveTrigger

ETGetCapturePacket ETRemotex

ETGetCapturePacketCount ETReset

ETGetCaptureParams ETReturnAddress

ETGetCollision ETRun

ETGetCounters ETSetJET210Mode

ETGetCRCError ETSetSel

ETGetCurrentLink ETSetup

ETGetDataLength ETTransmitCRC

ETGetDataPattern ETTransmitTrigger

ETGetDribbleCount ETVFDParams

ETGetErrorStatus ETVFDRun

ETGetGap

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide198

ETAlignCount
Description Specifies the number of alignment error bits to insert into the transmit stream. This is

used to generate alignment errors. If Count is zero, then alignment errors are not
introduced into the transmit stream.

Syntax int ETAlignCount(int Count)

Parameters Count int Specifies the number of alignment error bits to introduce into
every transmitted packet.

Range: 0 to 7. Numbers outside this range are invalid and have
no effect on the alignment error count.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if the function failed. See Appendix B for error codes.

Comments None

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 199

ETBNC
Description Defines the function associated with the rear panel BNC connectors.

Syntax int ETBNC(int BNCid, int Config)

Parameters BNCid int Identifies the rear panel BNC connector being addressed.

ETBNC_1 = BNC#1
ETBNC_2 = BNC#2
ETBNC_3 = BNC#3

All other values are invalid and have no effect on the current BNC
mode.

Config int Identifies the specific function associated with the BNC. The
following arguments are valid:

ETBNC_INPUT Input (Hi-Z)
ETBNC_RXEA Receive enable, Port A
ETBNC_RXEB Receive enable, Port B
ETBNC_RCKA Receive Clock, Port A
ETBNC_RCKB Receive Clock, Port B
ETBNC_RDATA Receive Data, Port A
ETBNC_RDATB Receive Data, Port B
ETBNC_TXEA Transmit Enable, Port A
ETBNC_TXEB Transmit Enable, Port B
ETBNC_TDAT Transmit Data
ETBNC_COLLISIONA Collision, Port A
ETBNC_COLLISIONB Collision, Port B
ETBNC_CRCA CRC Error, Port A
ETBNC_CRCB CRC Error, Port B
ETBNC_UNDRA Undersize Error, Port A
ETBNC_UNDRB Undersize Error, Port B
ETBNC_OVRA Oversize Error, Port A
ETBNC_OVRB Oversize Error, Port B
ETBNC_ALA Alignment Error, Port A
ETBNC_ALB Alignment Error, Port B
ETBNC_TXTRIG Transmit Trigger
ETBNC_RXTRIG Receive Trigger
ETBNC_10MHZ 10 MHz internal clock
ETBNC_10MHZINV 10 MHz internal clock, inverted
ETBNC_20MHZ 20 MHz internal clock
ETBNC_20MHZINV 20 MHz internal clock, inverted
ETBNC_EXTCLK External Clock input, BNC#3 only
ETBNC_EXTCLKINV External Clock inverted input, BNC#3 only

All other values are invalid and have no effect on the current BNC
mode

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments If the JET-210 mode had previously been active, then the execution of this function for
BNCid will place BNCid in the requested mode and the other two BNCid’s in the input
mode. Conversely, any subsequent execution of the SetJET210Mode(1) function will
place all three BNCid’s in the JET-210 mode.

ADVICE: When in doubt, use function ETGetBNC(...) to find out specifically what
mode the BNC’s are in.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide200

ETBurst
Description Specifies the Burst Mode and the Burst Count

Syntax int ETBurst(int Mode, long Count)

Parameters Mode int Identifies whether or not the Burst Mode is on or off:

ETBURST_ONBurst mode ON

ETBURST_OFF Burst mode OFF

All other values are invalid and have no effect on the current burst
mode.

Count long Specifies the number of packets to be transmitted during the
Burst.

Range: 1 to 224–1 (1–16777215) All values outside this range are
invalid and have no effect on the current burst mode.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments Once the Burst Mode is enabled, the ETRun function takes on a different characteristic:
“Step” causes the ET-1000 to internally load the Burst Count. “Run” causes the ET-
1000 to either transmit the number of packets previously loaded (using “Step”) OR
transmit a single packet if no internal Burst Counts were previously loaded.

ETCaptureParams
Description Specifies Capture Offset, Range, Filter, Port, Buffer mode, Time-tag and run mode. All

parameters must be put into CStruct before calling this function.

Syntax int ETCaptureParams(CaptureStructure* CStruct)

Parameters CStruct CaptureStructure* Points to the CStruct structure that holds all
the capture parameters. The structure must be loaded before
calling this routine. If CStruct contains values outside appropriate
ranges, this function will not execute.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See CaptureStructure definition below.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 201

CaptureStructure
Parameter Description

unsigned Offset Integer value specifying the offset (in bit times) from the first bit after the preamble.
This value is returned as 0 in ETGetCaptureParams if Mode is
CAPTURE_ENTIRE_PACKET.

Range: 0 to 65535 (0x0000 to 0xFFFF)

unsigned Range Integer value specifying the number of bits to capture within each packet, once the
capture criteria have been met.

Range: 0 to 65535 (0x0000 to 0xFFFF).

If Range is larger than the packet size, capturing on that packet is halted at the end
of the packet. This value is returned as 0 in ETGetCaptureParams if Mode is
CAPTURE_ENTIRE_PACKET.

int Filter Specifies the type of data to capture and filter. The Filter type can be one of the
following or a combination. To get a combination, create an integer by “OR-ing”
together criteria from the list. Remember that the Range and Offset values still
apply. Thus when All Data is selected, only the data that satisfies the Range and
Offset criteria is captured and stored.

CAPTURE_NONE None (off)
CAPTURE_ANY Any data on the line
CAPTURE_NOT_GOOD Non standard Ethernet packets
CAPTURE_GOOD Packets without error
CAPTURE_ERRS_RXTRIG Packets with any following errors (same

as previous version’s “All Data”)
CAPTURE_RXTRIG Specified by Receive Trigger
CAPTURE_CRC CRC errored packets
CAPTURE_ALIGN Alignment erred packets
CAPTURE_OVERSIZE Oversize packets
CAPTURE_UNDERSIZE Undersize packets
CAPTURE_COLLISION Collision packets

int Port Identifies the port used in capturing data.
PORT_A Port A
PORT_B Port B

int BufferMode Specifies how the capture buffer is to be used.
Continuous capture. When the capture buffer fills up, it continues capturing
data, which overwrites the previously captured data.
One-shot. When the capture buffer fills up, capture is stopped.

int TimeTag This value must always be OFF to get valid capture data. (Use of TIME_TAG_ON
will result in unpredictable results):
Time tagging is disabled.

int Mode Determines the capture mode:
CAPTURE_ENTIRE_PACKET Capture all data.
CAPTURE_RANGE Capture only the portions of packets

specified by Range and Offset.
CAPTURE_OFF Off (no capture)

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide202

ETCaptureRun
Description Starts (or restarts) the capture process.

Syntax int ETCaptureRun(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments It is advised that you set up the desired capture parameters with the
ETCaptureParams(CaptureStructure *CStruct) function before calling this function.
Otherwise, the attached ET-1000 will run whatever capture sequence was previously
left in it. Use the ETGetCapturePacketCount function to monitor the number of
packets successfully captured after you initiate the capture process with this
command. Use the ETGetCapturePacket(...) function to retrieve packets captured. To
clear the buffer, you must turn the Capture off and then back on. If a capture is
currently in progress when this function is executed, all captured data obtained thus far
will be discarded and replaced with new capture information.

See the definition of CaptureStructure above.

ETCollision
Description Determines the collision mode, offset, duration, and count.

Syntax int ETCollision(CollisionStructure* CStruct)

Parameters CStruct CollisionStructure* Holds information pertaining to the collision
mode (off, long, adjustable, Port A receive packet or Port B receive
packet), the collision offset (in bits), duration (bit-times) and count.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See the definition of CollisionStructure below.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 203

CollisionStructure
Parameter Description

unsigned Offset Specifies the offset, in bits, starting from the first bit of the preamble where the
collision is to take place. This value is only used when the Collision Mode is
COLLISION_ADJ, CORP_A or CORP_B. It is ignored when the Collision Mode is
COLLISION_LONG.

Range: 0 to 65535 (0x0000 to 0xFFFF).

Note that the Offset value entered here also pertains to the collisions produced
on the SmartBits when it is attached to the ET-1000.

unsigned Duration Specifies the duration in bits that the collision is to be asserted. This value is
used only when the Collision Mode is COLLISION_ADJ, CORP_A or CORP_B. It
is ignored when the Collision Mode is COLLISION_LONG.

Range: 1 to 65535 (0x0000 to 0xFFFF). A duration of 0 is invalid.

If Note that the Duration value entered here also pertains to the collisions
produced on the SmartBits when it is attached to the ET-1000.

int Count Specifies the number of consecutive collisions to produce (one in each packet)
before the collision goes inactive. A count of 0 essentially disables the collision
counting mechanism, thus producing continuous collisions of the specified type.

Range: 0 to 1024.

If Note that the Duration value entered here also pertains to the collisions
produced on the SmartBits when it is attached to the ET-1000.

int Mode Specifies the collision mode.
COLLISION_OFF Collision Off
COLLISION_LONG Long Collision
COLLISION_ADJ Adjustable Collision (on transmission)
CORP_A Collision on receive packet, Port A
CORP_B Collision on receive packet, Port B

ETDataLength
Description Specifies the number of bytes per packet to be used in transmitting data from the ET-

1000.

Syntax int ETDataLength(long Count)

Parameters Count long Contains the number of bytes that are to be inserted in each
packet.

Range: 0 to 999,999. Values outside this range are invalid and
have no effect on the transmitted data length.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments Count does not include the 4 CRC bytes appended to every normal Ethernet packet.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide204

ETDataPattern
Description Defines the background data pattern to transmit.

Syntax int ETDataPattern(int Pattern)

Parameters Pattern int Determines the type of pattern that is transmitted out Port A
and/or Port B. The choices are:

ETDP_ALLZERO All 0

ETDP_ALLONE All 1

ETDP_RANDOM Random

ETDP_AAAA Continuous AAAA(hex)

ETDP_5555 Continuous 5555(hex)

ETDP_F0F0 Continuous F0F0(hex)

ETDP_0F0F Continuous 0F0F(hex)

ETDP_00FF Continuous 00FF00FF(hex)

ETDP_FF00 Continuous FF00FF00(hex)

ETDP_0000FFFF Continuous 0000FFFF0000FFFF(hex)

ETDP_FFFF0000 Continuous FFFF0000FFFF0000(hex)

ETDP_00000000FFFFFFFF Continuous 00000000FFFFFFFF(hex)

ETDP_FFFFFFFF00000000 Continuous FFFFFFFF00000000(hex)

ETDP_INCR8 Incrementing 8 bit pattern

ETDP_INCR16 Incrementing 16 bit pattern

ETDP_DECR8 Decrementing 8 bit pattern

ETDP_DECR16 Decrementing 16 bit pattern

All other values are invalid and will result in no changes to the
currently transmitted data pattern

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments If VFD is active, then its pattern will be transmitted for the duration and offset specified
in the applicable VFDStructure. Any transmitted data outside this envelope will consist
of the data pattern specified in this function.

ETDribbleCount
Description Specifies the number of dribble bits to insert into the transmit stream.

Syntax int ETDribbleCount(int Count)

Parameters Count int Determines the number of dribble bits to insert.

Range: 0 to 7. A value of 0 inserts no dribble bits. Any value
outside this range is invalid and will result in no changes to the
current dribble count.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments None

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 205

ETGap
Description Specifies the inter-packet gap value that is to be transmitted.

Syntax int ETGap(long Count)

Parameters Count long Determines the gap value to be inserted in the transmit stream of both
ports.

Range: 0 to 999,999. Any values outside this range are invalid and result in
no changes to the current gap setting.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments The value of Count is further scaled by the most recent value left in function
ETGapScale(int TimeOfGap). If the scale is set to the “100ns” setting, then the
number left in Count will produce an inter-packet gap according to the following
formula:

GAP = 600+(100*Count) nanoseconds

If the scale is set to the “1µs” setting, then the number left in Count will produce an
inter-packet gap according to the following formula:

GAP = 0.6+Count microseconds

The ETGap and ETGapScale functions may appear in any order; however, keep in
mind that the attached ET-1000 will execute each instruction in the order in which it is
received. Thus, setting the scale before setting the Gap value will result in the sending
of two or more consecutive packets with an interim value for the gap. To avoid this
problem, stop transmission (ETRun function) before changing the Gap parameters,
and then re-start transmission when done.

ETGapScale
Description Specifies that either a 100 ns gap scale or a 1 µs gap scale is to be used in

determining the gap time.

Syntax int ETGapScale(int TimeOfGap)

Parameters TimeOfGap int Determines the scale to be used for setting the gap time:

ETGAP_100NS 100 nanosecond gap scale

ETGAP_1US 1 microsecond gap scale

All other values are invalid and will result in no changes to the gap
scale setting.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0 if
the function failed. See Appendix B for error codes.

Comments See the comment section under function ETGap(long Count).

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide206

ETGetAlignCount
Description Returns the number of alignment error bits currently being inserted into the transmit

data stream.

Syntax int ETGetAlignCount(void)

Parameters None

Return Value The return value will range from 0 to 7, corresponding to the number of alignment error
bits being inserted. If the return value is less than zero, a failure occurred. See
Appendix B for error codes.

Comments To set the number of alignment error bits for transmission, use function
ETAlignCount.

ETGetBNC
Description Retrieves the configuration of the BNC identified by BNCid.

Syntax int ETGetBNC(int BNCid)

Parameters BNCid int Identifies the BNC connector whose configuration is needed:

ETBNC_1 BNC #1

ETBNC_2 BNC #2

ETBNC_3 BNC #3

Any values outside this range are invalid and will return a failure
code.

Return Value The return value corresponds to the most recent command which set the function for
the BNC. See ETBNC for an identification of these values. (Note that a return value of
99 indicates that the BNCs are in the JET-210 mode.) If the return value is less than
zero, a failure occurred. See Appendix B for error codes.

Comments See function ETBNC to set the configuration for a particular BNC.

ETGetBurstCount
Description Returns the current Burst Count.

Syntax long ETGetBurstCount(void)

Parameters None.

Return Value Returns the current Burst Count, which ranges from 1 to 224-1. If the return value is
less than zero, a failure occurred. See Appendix B for error codes.

Comments The Burst Mode need not be enabled in order to execute this function. See the
ETBurst function to establish the burst mode and count.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 207

ETGetBurstMode
Description Returns the current Burst Mode.

Syntax int ETGetBurstMode(void)

Parameters None

Return Value Returns the current Burst Mode, ranging from ET_OFF (0) to ET_ON (1). If the
return value is less than zero, a failure occurred. See Appendix B for error codes.

Comments See the ETBurst function to establish the burst mode and count.

ETGetCapturePacket
Description Dumps the data from a captured packet into a specified location.

Syntax int ETGetCapturePacket(long PI, int far * Buffer, int BufferSize)

Parameters PI long Identifies the packet whose contents are to be read into
Buffer. Packet numbers start at zero.

Buffer int* (far pointer) Points to an area in memory where the packet
data is to be placed.

BufferSize int Determines the maximum number of characters to be put
into Buffer.

Return Value The return value specifies the number of characters written into Buffer (not counting
NULL, if any) if the function executed successfully. It will be a positive number
greater than or equal to zero. If the return value is less than zero, a failure occurred.
See Appendix B for error codes.

Comments To determine the number of packets before actually retrieving them, use
ETGetCapturePacketCount(...).

ETGetCapturePacketCount
Description Returns the number of complete packets captured thus far.

Syntax long ETGetCapturePacketCount(void)

Parameters None

Return Value This function returns a long integer if it executed correctly. The integer indicates the
number of packets successfully captured by the attached ET-1000. If the return
value is less than zero, then it is a failure code. See Appendix B for error codes.

Comments If in Continuous Capture mode, you must stop capture before getting the
CapturePacketCount.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide208

ETGetCaptureParams
Description Returns the current capture parameters.

Syntax int ETGetCaptureParams(CaptureStructure* CStruct)

Parameters CStruct CaptureStructure* Pointer to the CaptureStructure structure
that is to hold the capture parameters.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if the function failed. See Appendix B for error codes.

Comments Use function ETCaptureParams to define the capture parameters on the attached
ET-1000. You need not define the capture parameters before calling this function.
The information returned in the CaptureStructure structure represents the current
setup on the attached ET-1000.

See the definition of CaptureStructure on page 201.

ETGetCollision
Description Returns the current collision mode.

Syntax int ETGetCollision(CollisionStructure* CStruct)

Parameters CStruct CollisionStructure* Points to the structure to be filled with
information pertaining to the collision setup inside the attached
ET-1000.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if the function failed. See Appendix B for error codes.

Comments See the definition of CollisionStructure in the Data Structures portion of this
manual.

ETGetCounters
Description Retrieves all counter information from the attached ET 1000.

Syntax int ETGetCounters(CountStructure* CStruct)

Parameters CStruct CountStructure* Points to the CountStructure structure which is
to hold all the information pertaining to the ET-1000’s internal
counters.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if the function failed. See Appendix B for error codes.

Comments See the definition of CountStructure below

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 209

CountStructure
Parameter Description

unsigned long ERAEvent Event count for CRC errors on Port A.

unsigned long ERARate Rate count for CRC errors on Port A.

unsigned long ERBEvent Event count for CRC errors on Port B.

unsigned long ERBRate Rate count for CRC errors on Port B.

unsigned long TXAEvent Event count for transmitted bits on Port A.

unsigned long TXARate Rate count for transmitted bits on Port A.

unsigned long TXBEvent Event count for transmitted bits on Port B.

unsigned long TXBRate Rate count for transmitted bits on Port B.

unsigned long RXAEvent Event count for received bits on Port A.

unsigned long RXARate Rate count for received bits on Port A.

unsigned long RXBEvent Event count for received bits on Port B.

unsigned long RXBRate Rate count for received bits on Port B.

unsigned long CXAEvent Event count for collisions on Port A.

unsigned long CXARate Rate count for collisions on Port A.

unsigned long CXBEvent Event count for collision on Port B.

unsigned long CXBRate Rate count for collisions on Port B.

unsigned long ALAEvent Event count for alignment errors Port A.

unsigned long ALARate Rate count for alignment errors Port A.

unsigned long ALBEvent Event count for alignment errors Port B.

unsigned long ALBRate Rate count for alignment errors Port B.

unsigned long UPAEvent Event count for undersize packets on Port A.

unsigned long UPARate Rate count for undersize packets on Port A.

unsigned long UPBEvent Event count for undersize packets on Port B.

unsigned long UPBRate Rate count for undersize packets on Port B.

unsigned long OPAEvent Event count for oversize packets on Port A.

unsigned long OPARate Rate count for oversize packets on Port A.

unsigned long OPBEvent Event count for oversize packets on Port B.

unsigned long OPBEvent Event count for oversize packets on Port B.

unsigned long OPBRate Rate count for oversize packets on Port B.

unsigned long MFAEvent Event Multi-Function count, Port A.

unsigned long MFARate Rate Multi-Function count, Port A.

unsigned long MFBEvent Event Multi-Function count, Port B.

unsigned long MFBRate Rate Multi-Function count, Port B.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide210

ETGetCRCError
Description Used to inquire whether or not CRC errors are currently being transmitted by the

attached ET-1000.

Syntax int ETGetCRCError(void)

Parameters None

Return Value This function returns ET_OFF (0) if CRC errors are currently NOT being transmitted.
A value of ET_ON (1) is returned if CRC errors ARE currently being transmitted. A
return value less than zero is a failure code. See Appendix B for error codes.

Comments None

ETGetCurrentLink
Description Used to inquire which attached ET-1000 in the Programming Library is the current

one.

Syntax int ETGetCurrentLink(void)

Parameters None

Return Value This function returns the ET-1000 ComPort which is associated with “current” ET-
1000.

Comments See ETSetCurrentLink, ETLink.

ETGetDataLength
Description Returns the current length, in bytes, of the transmitted data packet.

Syntax long ETGetDataLength(void)

Parameters None

Return Value This function returns the length, in bytes, of the attached ET-1000’s transmitted data
packets. The number does not include the four bytes of CRC. If the function is
successful, the returned value will range from 0 to 999,999. A return value less than
zero is a failure code, indicating that the function failed. See Appendix B for error
codes.

Comments None

ETGetDataPattern
Description Returns the identity of the current background transmit data pattern.

Syntax int ETGetDataPattern(void)

Parameters None

Return Value If the function executed successfully, it returns a value corresponding to the current
background data pattern. These values have the same meaning as parameter
Pattern in function ETDataPattern. This function returns a failure code (less than
zero) if it failed. See Appendix B for error codes.

Comments None

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 211

ETGetDribbleCount
Description Returns the current number of dribble bits being inserted into the transmit stream of

the attached ET-1000.

Syntax int ETGetDribbleCount(void)

Parameters None

Return Value Returns the number of dribble bits being inserted. Range: 0 to 7. This function
returns a failure code (less than zero) if it failed. See Appendix B for error codes.

Comments None

ETGetErrorStatus
Description Used to inquire the nature of the most recent failure on the communications port.

Syntax int ETGetErrorStatus(void)

Parameters None

Return Value The return value indicates the failure code of the most recent serial port failure. See
Appendix B for error codes. If no failures have been detected, this function returns a
zero.

Comments See Appendix B to interpret the return value from this function.

ETGetGap
Description Returns the gap value currently being transmitted by the attached ET-1000.

Syntax long ETGetGap(void)

Parameters None

Return Value Returns the gap value currently in use by the attached ET-1000. Range: 0 to
999,999. This function returns a failure code (less than zero) if it failed. See
Appendix B for error codes.

Comments The correspondence between the gap value and the actual gap time in the ET-
1000’s transmit stream depends on the current gap scale in use. Use function
ETGetGapScale to find out what scale is currently in use.

• If the scale is set to the “100ns” setting (ETGAP_100NS), then the physical gap
value is expressed as:

GAP = 600+(100*ReturnValue) nanoseconds

• If the scale is set to the “1µs” setting (ETGAP_1US), then the physical gap value is
expressed as:

GAP = 9.6+ReturnValue microseconds.

ETGetGapScale
Description Returns the current gap scale in use by the attached ET-1000.

Syntax int ETGetGapScale(void)

Parameters None

Return Value If the function is successful, then the return value is 0 when the ET-1000 gap scale
is set to the 1 microsecond scale. The return value is 1 when the gap scale is 100
nanoseconds. This function returns a failure code if it failed. See Appendix B for
error codes.

Comments See the comment section of function ETGetGap.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide212

ETGetJET210Mode
Description Returns the current ET-1000 JET210 mode.

Syntax int ETGetJET210Mode(void)

Parameters None

Return Value ET_OFF JET-210 mode disabled

ET_ON JET-210 mode enabled

Returns a failure code if the function failed. See Appendix B for error codes.

Comments None

ETGetLNM
Description Returns the current Live Network Mode status of the attached ET-1000.

Syntax int ETGetLNM(void)

Parameters None

Return Value The return value is either ETLNM_ON to indicate that the attached ET-1000’s Live
Network Mode is active, or ETLNM_OFF to indicate that the attached ET-1000’s
Live Network Mode is inactive. If the return value is neither of these, then an error
condition has been detected. The return value will be less than zero in this case,
indicating the failure code. See Appendix B for error codes.

Comments Live Network Mode is currently available only for the ET-1000’s Port A.

ETGetPreamble
Description Returns the current number of preamble bits being inserted into the transmit stream

by the attached ET-1000.

Syntax int ETGetPreamble(void)

Parameters None

Return Value Returns the number of preamble bits being used, in the range 10 to 128. A return
value less than 0 indicates a failure. See Appendix B for error codes.

Comments None

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 213

ETGetReceiveTrigger
Description Returns the receive trigger parameters currently implemented by the attached

ET-1000.

Syntax int ETGetReceiveTrigger(TriggerStructure* RStruct)

Parameters RStruct TriggerStructure* Points to a TriggerStructure structure which
is to contain the trigger parameters

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if there was a failure. See Appendix B for error codes.

Comments See the definition of TriggerStructure below.

TriggerStructure
Parameter Description

unsigned
Offset

Specifies the number of bit times that pass between the first non-preamble bit and
when the trigger word is searched for in the data stream.

Range: 0 to 65535 (0x0000 to 0xFFFF).

unsigned
Range

Specifies the size of the trigger word, in bits.

Range: 1 to 96 (0x0001 to 0x0060).

unsigned
Pattern

Array of bytes containing the trigger word. Pattern[0] is the LSByte, Pattern[11] is the
MSByte. The lower 8 bits of each element contain trigger information. The upper 8
bits are “don’t cares.”

ETGetRun
Description Returns the current run state of the attached ET-1000.

Syntax int ETGetRun(void)

Parameters None

Return Value The return value depends on the run state:
ETSTOP “Stop” mode

ETSTEP “Step” mode

ETRUN “Run” mode

A return value less than 0 indicates a failure. See Appendix B for error codes.

Comments

ETGetSel
Description Returns the current Select state of the attached ET-1000.

Syntax int ETGetSel(void)

Parameters None

Return Value Return value depends on the current Select state:
ETSELA Transmit on A, receive on B

ETSELB Transmit on B, receive on A

ETPINGPONG Ping Pong mode

Return value is less than zero if the function failed. See Appendix B for error codes.

Comments

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide214

ETGetSwitch
Description Reads the front panel settings of the attached ET-1000 and returns the settings.

Syntax int ETGetSwitch(SwitchStructure* SStruct)

Parameters SStruct SwitchStructure* Points to a SwitchStructure structure that is to
be loaded with information pertaining to the attached ET-1000’s
front panel switch settings.

Return Value Return value is >= 0 if the function executed successfully. Return value is < 0 if the
function failed. See Appendix B for error codes.

Comments See the defintion of SwitchStructure below.

SwitchStructure
Parameter Description

unsigned long Gap Current Gap Switch setting.

unsigned long Data Current Data Switch setting.

unsigned Disp Current Disp Switch setting.

unsigned Mode Current Mode Switch setting.

int Run Current Run Switch setting:
Run = ETRUN When system is in RUN state.
Run = ETSTEP When system is the STEP state.
Run = ETSTOP When system is in STOP state.

int Sel Current Sel Switch setting:
Sel = ETSELA When transmitting out Port A.
Sel = ETSELB When transmitting out Port B.
Sel = ETPINGPONG When the system is in the “Ping Pong”

mode.

ETGetTransmitTrigger
Description Returns the transmit trigger parameters currently implemented by the attached ET-

1000.

Syntax int ETGetTransmitTrigger(TriggerStructure* TStruct)

Parameters TStruct TriggerStructure* Points to a TriggerStructure structure which
is to contain the trigger parameters

Return Value The return value is >= 0 if the function executed successfully. A failure code less
than zero is returned if this function failed to execute. See Appendix B for error
codes.

Comments See the definition of TriggerStructure on page 213.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 215

ETGetVFDRun
Description Returns the current run state of the VFD pattern on the attached ET-1000.

Syntax int ETGetVFDRun(void)

Parameters None

Return Value Return value depends on the VFD run state:

ET_OFF VFD NOT being transmitted

ET_ON VFD being transmitted

A failure code, which is less than zero, is returned if this function failed to execute.
See Appendix B for error codes.

Comments None

ETLNM
Description Activates or de-activates Live Network Mode.

Syntax int ETLNM(int Type)

Parameters Type int Determines the state of the live network mode:

ETLNM_ON Live Network Mode ON

ETLNM_OFF Live Network Mode OFF

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if this function failed to execute. See Appendix B for
error codes.

Comments Network Mode is currently available only on Port A of the attached ET-1000.

ETLoopback
Description Activates or de-activates internal loopback of the specified port.

Syntax int ETLoopback(int Port, int Status)

Parameters Port int Determines the ET-1000 port for activating or deactivating
internal loopback:

LOOP_PORT_A Loopback on Port A

LOOP_PORT_B Loopback on Port B

Any other values are invalid and will have no effect on the
attached ET-1000.

Status int Determines the loopback status of Port:

ETLOOPBACK_ON Loopback the port

ETLOOPBACK_OFF Do not loopback the port

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if this function failed to execute. See Appendix B for
error codes.

Comments None

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide216

ETMFCounter
Description Establishes the item to be counted by the associated Multi-Function counter.

Syntax int ETMFCounter(int Port, int Mode)

Parameters Port int Determines the ET-1000 port whose associated Multi-
Function counter is to be re-assigned:

MFPORT_A ET-1000 Port A

MFPORT_B ET-1000 Port B

All other values are invalid and will not have any effect on the
ET-1000.

Mode int Identifies the item to be counted by the Port’s Multi-Function
counter. Values are:

ETMF_PACKET_LENGTH Packet Length

ETMF_RXTRIG_COUNT Receive Trigger Count

ETMF_TXTRIB_COUNT Transmit Trigger Count

ETMF_TIME_ROUNDTRIP Time from Port to Port

ETMF_TIME_PORT2PORT Time from Port to other Port

ETMF_RXTRIG_RATE Receive Trigger Rate

ETMF_TXTRIG_RATE Transmit Trigger Rate

ETMF_PREAMBLE_COUNT Number of preamble bits in Port

ETMF_GAP_TIME Packet Gap Time in Port

ETMF_SQE_COUNT SQE count in Port

ETMF_TOTAL_LENGTH Total packet length in Port

All other values are invalid and will not have any effect on the ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

ETPreamble
Description Sets the preamble bit count that is to be transmitted by the attached ET-1000.

Syntax int ETPreamble(int Count)

Parameters Count int Specifies the number of preamble bits to be inserted into the
transmit stream of the attached ET-1000.

Range: 10 to 128. Values outside this range are invalid and will
have no effect on the attached ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 217

ETReceiveTrigger
Description Sets up the receive trigger on the attached ET-1000.

Syntax int ETReceiveTrigger(TriggerStructure* RStruct)

Parameters RStruct TriggerStructure* Points to a TriggerStructure structure that
contains all the trigger information necessary to set up the
receive trigger on the attached ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments See the definition of TriggerStructure on page 213.

ETRemote
Description Sets the attached ET-1000 in either the local or remote mode.

Syntax unsigned ETRemote(int Mode)

Parameters Mode int Determines the mode in which the attached ET-1000
operates:

ETLOCALMODE Local Mode

ETREMOTEMODE Remote Mode

All other values are invalid and will have no effect on the
attached ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments Once the attached ET-1000 is placed in the local mode, it will no longer respond to
instructions sent to it by the PC—except, of course, the instruction generated by
ETRemote. This function will typically be used to place the attached ET-1000 in local
mode so that it responds to user input from its front panel. (In remote mode, all front
panel functions except DISPLAY and RESET are inoperative.)

ETReset
Description Resets all counters on the attached ET-1000.

Syntax int ETReset(void)

Parameters None

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This function essentially emulates the activation of the attached ET-1000’s front
panel RESET switch.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide218

ETReturnAddress
Description Returns the same void pointer passed.

Syntax void * ETReturnAddress(void *)

Parameters p void* Standard pointer.

Return Value avoid * (32 bit value, which in Visual Basic is a long)

Comments Visual Basic does not have a pointer type, yet can pass arguments by reference.
The HTVFD structure includes a pointer. This function is a workaround to allow a
long to be used as a pointer for the HTVFDStructure. This is seen in the example
snippet in the VFD bug fix above.

ETRun
Description Sets the run state on the attached ET-1000.

Syntax int ETRun(int RunValue)

Parameters RunValue int Determines the run state to be executed on the attached ET-
1000:

ETSTOP Halts transmission

ETSTEP Sends a single packet

ETRUN Sends continuous packets

All other values are invalid and have no effect on the attached
ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments The result of executing this function differs somewhat when the attached ET-1000 is
in the BURST mode. See the ETBurst function.

ETSetJET210Mode
Description To set up the attached ET-1000 to operate with or without a JET-210 (Jitter

Simulator) attached.

Syntax int ETSetJET210Mode(int Mode)

Parameters Mode int Sets the JET-210 mode of the attached ET-1000:

ET_OFF Disable the JET-210 mode

ET_ON Enable the JET-210 mode

All other values are invalid and will not work on ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments Since the JET-210 Jitter Simulator assumes control over the three rear panel BNC
connectors on the attached ET-1000, the BNC functions will be pre-empted. Use the
ETBNC function to re-establish BNC functionality after disabling the JET-210 mode.
Disabling the JET-210 mode with this function effectively puts the three BNC
connectors into Input mode.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 219

ETSetSel
Description Determines the transmission function associated with Port A and Port B of the

attached ET-1000.

Syntax int ETSetSel(int SelValue)

Parameters SelValue int Determines mode associated with the ET-1000 ports:

ETSELA Transmit on A, receive on B

ETSELB Transmit on B, receive on A

ETPINGPONG “Ping Pong” mode

All other values are invalid and will not work on the ET-1000

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

ETSetup
Description Stores and recalls the current setup internally in the attached ET-1000.

Syntax int ETSetup(int Mode, int SetupId)

Parameters Mode int Determines the mode of the setup function:

ETSTORESETUP store the current setup

ETRECALLSETUP recall a stored setup

All other values are invalid and will have no effect on the ET-
1000.

SetupId int Identifies the specific setup to store or recall. For recall, this
value ranges from 0 to 8; whereas 0 is the “factory default”
setup. (It cannot be changed.) You are allowed to store setups 1
to 8. Any values outside these ranges are invalid and will have
no effect on the ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments The setups referenced in this function refer to setups that are stored internally within
the attached ET-1000. There are no library functions available for storing and
recalling setups from the PC’s disk.

NOTE: Recalling a previous setup in the ET-1000 will probably result in the loss of
the communication link. After executing this function, your application program
should unlink itself from the attached ET-1000 and then re-link. Use the following
procedure:

1. Issue the ETUnLink command

2. Wait 4 seconds. This allows the ET-1000’s serial port to settle after the recall
operation.

3. Re-link using the ETLink(...) function.

You may find that a re-link will result in a different Baud rate than before. Use the
ETSetBaud(...) function if you wish to re-establish the link at a particular Baud rate.
(Note that after issuing ETSetBaud, you must again UnLink and then Link.)

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide220

ETTransmitCRC
Description Enables or disables transmission of CRC errors on the attached ET-1000.

Syntax int ETTransmitCRC(int Active)

Parameters Active int Determines the state of the CRC error insertion on the
attached ET-1000:

ETCRC_ON Enable CRC transmission

ETCRC_OFF Disable CRC transmission

All other values are invalid and have no effect on the attached
ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

ETTransmitTrigger
Description Sets up the transmit trigger on the attached ET-1000.

Syntax int ETTransmitTrigger(TriggerStructure* TStruct)

Parameters TStruct TriggerStructure* Points to a TriggerStructure structure that
contains all the trigger information necessary to set up the
transmit trigger on the attached ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments See the definition of TriggerStructure on page 213.

ETVFDParams
Description Sends VFD information to the attached ET-1000.

Syntax int ETVFDParams(VFDStruct* VFDdata)

Parameters VFDdata VFDStruct* Points to a VFDStruct structure which contains all
the VFD information required to implement a VFD pattern on the
attached ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments Depending on the size of the Range parameter of VFDdata, this function may take
some time to download its information to the attached ET-1000.

See the definition of VFDStruct below.

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide 221

VFDStruct
Parameter Description

unsigned Offset Specifies the position in the transmit data stream where VFD data begins.
Measured in bit times elapsed since the final preamble bit.

Range: 0 to 65535 (0x0000 to 0xFFFF).

unsigned Range Specifies the size of the VFD word in bytes.

Range: 1 to 4095(0x0001 to 0xFFF).

int Start[4096] Contains the VFD Start pattern. Start[0] is the LSByte, Start[4095] is the
MSByte.

int Increment[4096] Contains the VFD Increment (decrement) word.

Increment[0] is the LSByte, Increment[4095] is the MSByte.

Because of this structure’s large memory requirements, it is recommended
that you dynamically allocate and deallocate memory for it.

See the example below.

Example for int Increment[4096] in VFDStruc

main()
{

VFDStructure *VFD; //pointer to a VFD structure
VFD = (VFDStructure*)malloc(sizeof(VFDStructure));
//allocates memory
VFD->Range = 32;
VFD->Offset = 8; //for example:

//code to set up the data patterns
ETVFD(VFD); //send to ET1000/SMB-1000
{} // other code...
free(VFD); //deallocates far memory
}

Appendix A
Original Functions for the ET-1000 Only

SmartLib User Guide222

ETVFDRun
Description This function starts or halts the transmission of VFD data from the attached

ET-1000.

Syntax int ETVFDRun(int Start)

Parameters Start int Determines the state of the VFD transmission:

ETVFD_ENABLE Enable VFD transmission

ETVFD_DISABLE Disable VFD transmission

All other values are invalid and have no effect on the attached
ET-1000.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments VFD information must first be sent to the attached ET-1000 using the
ETVFDParams function. Once the ETVFDParams function has set up the VFD
parameters, VFD transmission may be enabled and disabled numerous times
without the need to execute ETVFDParams again—as long as the VFD data doesn’t
need to be changed. If ETVFDParams is not executed before this function, the
attached ET-1000 will implement whatever VFD information it contains. NOTE:
Sometimes the ET-1000 will power-up with VFD active and running. Use
ETGetVFDRun to determine whether or not this is so, and then use ETVFDRun(...)
to place the ET-1000 in a known state.

SmartLib User Guide 223

Appendix B:
Error Codes

When a function is not successful, an error code is returned instead of data. Error code values are
always less than zero. They may be signed integers or signed long integers.

Error
Value Definition Description

–1 UNSPECIFIED ERROR An error condition was encountered but could not be
identified. This will occur if the system experienced an
error that does not fit into any of the above categories.

–2 PORT_NOT_LINKED An attempt to use a Programming Library function was
made without an active link to the SmartBits.

–3 UNLINK_FAILED An attempt to unlink the SmartBits from the serial port
failed. This could occur if the SmartBits is already unlinked
from the port before the ETUnLink command is called.

–4 INCORRECT_MODE The attached SmartBits was put into a mode of operation
where the attempted call to the library function was not
applicable. For instance, you cannot access packet data
unless the capture mode has been enabled.

–5 PARAMETER_RANGE An incorrect or invalid range was specified for a library
function parameter. This may include ranges within
structures whose pointers are passed as a parameter to
the function.

–6 PACKET_NOT_AVAILABLE An attempt was made to access information from an
indexed packet not currently in the capture buffer of the
attached SmartBits.

–7 SERIAL_PORT_DATA No errors were detected on the serial port, but the data
returned from it doesn’t appear to be correct. This
indicates a serial port with interference. Try reducing the
baud rate by modifying the ETSetBaud() parameter.

–8 ET1000_OUT_OF_SYNC The attached SmartBits is operating in a mode different
from what was expected. Perform an ETUnLink command
followed by Link.

–9 PACKET_NOT_FOUND An attempt was made to locate a packet within the
SmartBits’s capture buffer, but the packet contents could
not be found and/or verified.

–10 FUNCTION_ABORT The user aborted a function before it could run to
completion.

–11 ACTIVE_HUB_NOT_INITIALIZED An attempt to execute a command that requires a card
was unsuccessful because the library failed to properly
initialize the board. The library will always try to initialize
the board if it hasn’t been done so already, but for some
reason, the initialization failed. This could indicate a failed
card.

–12 ACTIVE_HUB_NOT_PRESENT An attempt to execute a command that requires a card
was unsuccessful because the addressed port had no
board installed in it.

–13 WRONG_HUB_CARD_TYPE An attempt to execute a command that requires a card
was unsuccessful because the addressed port contained
a Passive Hub board.

Appendix B
Error Codes

SmartLib User Guide224

Error
Value Definition Description

–14 MEMORY_ALLOCATION_ERROR An attempt to execute a command that requires a card
was unsuccessful because the addressed port contained
a Passive Hub board.

–15 UNSUPPORTED_INTERLEAVE Not currently implemented.

–16 PORT_ALREADY_LINKED The Programming Library supports one connection at a
time to an SmartBits. An ETLink command was issued
when an active link already exists.

–17 HUB_SLOT_PORT_UNAVAILBLE A request was made to perform an operation on a
Hub/Slot/Port that does not exist in the current
configuration.

–18 GROUP_HUB_SLOT_PORT_ERROR A request was made to create or perform an operation on
a group with a Hub/Slot/Port that does not exist in the
current configuration.

–19 REENTRANT_ERROR An attempt was made to call a Programming Library
function while BackgroundProcessing was enabled, and
the Programming Library was already performing a
function.

–20 DEVICE_NOT_FOUND_ERROR An attempt was made to address an attached device that
could not be found [e.g. an MII transceiver].

–21 PORT_RELINK_REQUIRED The connection is down, but no disconnect action was
taken by either side.

–22 DEVICE_NOT_READY Current use: Token Ring is down.

–23 GROUP_NOT_HOMOGENEOUS Not currently implemented. (Used only by undocumented
commands).

–24 INVALID_GROUP_COMMAND Not currently implemented. (Used only by undocumented
commands).

–25 ERROR_SMARTCARD_INIT_FAILED Unable to initialize card.

–26 SOCKET_FAILED Error in the socket connection for an Ethernet Link (PC to
SMB).

–27 SOCKET_TIMEOUT Timeout on the socket connection for an Ethernet Link
(PC to SMB).

–28 COMMAND_RESPONSE_ERROR Invalid command response received from SmartBits.

–29 CRC_ERROR CRC error in the data transfer.

–30 INVALID_LINK_PORT_TYPE An attempt was made to link a PC to a SmartBits chassis
over a connection that is recognized as neither a normal
Serial Comm Port nor a proper TCP/IP Socket Link. (This
error message should not occur.)

–31 INVALID_SYNC_CONFIGURATION User attempted to perform a GPS sync action when the
SmartBits is not set for GPS. (Could indicate that GPS is
not ready.)

–32 HIGH_DENSITY_CONTROLLER_ERROR

–33 HIGH_DENSITY_CARD_ERROR

–34 DATA_NOT_AVAILABLE An attempt was made to retrieve data from a card when
no data of the intended type was available. An example
would be when you attempt to retrieve histogram results
from a Layer3 card when no histogram information has
been accumulated yet.

–35 UNSUPPORTED_PLATFORM The function is not available on the current platform.
Currently this is used for HTDefaultStructure and related
functions that are not available on 16-bit Windows
platforms.

Appendix B
Error Codes

SmartLib User Guide 225

Error
Value Definition Description

–36 FILE_IO_ERROR An error occurred in accessing a file. Currently this will
occur when HTDefaultStructure or a related function is
called and the defaults file is not found.

–37 MULTI_USER_CONFLICT The attempted action conflicted with another user of the
same SmartBits. This will occur when a GPS sync start or
stop is attempted shortly after another user also attempts
a GPS sync action.

–98 SERIAL_PORT_TIMEOUT The serial port timed out while waiting for a response from
the SmartBits. This usually indicates a problem with the
physical serial link.

–501 NSTCL_PARAMETER_TYPE This error will occur when a given parameter is not of the
expected type, for example if a non-numeric argument is
given when an integer is expected. This error often occurs
when a "$" is missing in front of a variable name.

–502 NSTCL_INVALID_MSG_FUNC An attempt to unlink the SmartBits from the serial port
failed. The Tcl interface is unable to process a message
function because it doesn't recognize the given iType
parameters as matching the accompanying data structure
for the card at the specified location.

Appendix B
Error Codes

SmartLib User Guide226

SmartLib User Guide 227

Appendix C:
Library Revision History

Version 3.07
Version 3.07 includes all changes made after the official 3.05 SmartLib release, including
improvements made in:

• SmartLib 3.05 patch 1, patch 2, patch 3

• SmartLib 3.06 beta and beta 2

• SmartLib 3.07

Major Enhancements

• Multiuser support for the SMB-6000, SMB-600, and multiuser-capable SMB-2000.

• Support for several new SmartCards, including LAN-6100, POS-6500, LAN-6201, and ML-
5710 cards.

• Default values provided for message functions.

• Greatly simplified Tcl interface.

APIs Still Under Construction

Although SmartLib 3.07 Original Commands and Message Functions are ready for use and include
full technical support, SmartAPI for SmartApplications and SmartAPI for SmartSignaling are still
in progress and are not ready for use in this release.

To use either of these APIs, use SmartLib version 3.05 or earlier.

Win16 Support Ending Soon

SmartLib support for the Win16 platform (Windows 3.1, Windows for Workgroups 3.11, etc.) will
end after SmartLib 3.07. Future releases will not have support for the Win16 platform.

New Features and Fixes

• HTDefaultStructure function added to provide default values for message function structures.
The defaults file is in a user-editable ASCII format.

• The new Tcl interface, called smartlib.tcl, provides these benefits:

� Using defaults from Tcl has been made easier by providing defaults automatically in the
HTSetStructure function.

� The need for format commands for values being passed to SmartLib has been eliminated

� Setting arrays and array elements in Tcl has been made significantly easier by removing
previously required syntax overhead

� The library now accepts single aray elements as function parameters.

• Support for the POS-6500 SmartCard

• Support for the LAN-6201 SmartCard

Appendix C
Library Revision History

SmartLib User Guide228

• Support for the LAN-6100 SmartCard

• Support for the ML-5710 SmartCard

• Frame protocol filling functions now support TCP, UDP, and IP over Ethernet and 2 ATM
encapsulations (ENCAP_ATM_PVC and ENCAP_ATM_SVC_SNAP)

• Support for multiple simultaneous connections to all multiuser-capable chassis models. This
includes the SMB-6000, the SMB 600, and multiuser-capable SMB-2000's. New functions
were added, including NSSocketLink, HTSlotReserve, HTSlotRelease, and
HTSlotOwnership. NSSocketLink is similar to ETSocketLink with the additional capability to
control the reservation of ports at link time. HTSlotReserve allows a specific slot to be
reserved exclusively for the current user. HTSlotRelease allows a previously reserved card to
be released for use by others. HTSlotOwnership provides for slot reservation checks.

• Native port mapping for the SMB-6000 and SMB-600. Native mapping mode allows
individual ports in slots to be addressed using their actual port number. See the user manual
for more details.

• Added a new error code, MULTI_USER_CONFLICT returned when a synchronized start is
attempted while another user is using the GPS subsystem

• ATM Message functions providing enhanced stream indexes are now available for use.

• ATM-9155 A and B cards can now be distinguished from ATM-9155 C cards via a new
constant returned from HTGetCardModel

• The ability to enable or disable inverse ARPs on ATM cards was added via the
ATMClassicalIP structure's new ucInvArpReplyOff field

• PPP support for the POS, WAN and ATM SmartCards.

• The NSSetControllerID command was added to allow the configuration of the controllerID for
SmartMetrics tests on high-density chassis

• Changed message returned by sourcing et1000.tcl

• New error codes have been added. –34 represents "data not available" during communications
with the high-density controller family. –35 (UNSUPPORTED_PLATFORM) is for functions
that are not available on the given operating system. FILE_IO_ERROR (–36) means that a file
couldn't be read or written. Usually it means the default value file cannot be found.
MULTI_USER_CONFLICT (–37) is returned in the case when two users attempt an operation
requiring a shared resource, like an attached GPS unit, at the same time.

• Error codes –501 and –502 are returned by the Tcl interface when it detects invalid parameters
or message functions, respectively.

• Visual Basic and Delphi interfaces have been fixed to resolve minor errors

• Bug #5359: ETH_TRANSMIT/LAN-6100A: SmartLib does not pass the value assigned to
uiVFD3DataCount to the SmartCard. Instead it passes the value defined in
uiVFD3BlockCount. Currently the LAN-6100A does not support VFD Block Counts.

• Bug #5227: With UNIX Library HGSetSpeed and HGDuplexMode do not work unless you
access the MII registers with another command or program. Dumping the MII registers shows
the commands are not changing the values on the registers. (After you look any subsequent
HGSetSpeed or HGDuplexMode commands will work on the port you looked at.

• Bug #5146: HGGetCounters doesn't work with multiple socket links. It gets valid counter
values from the first socket link only; counter values from the rest of the links are 0. Test
script: project/tests/sync8.tcl

Appendix C
Library Revision History

SmartLib User Guide 229

• Bug #4989: GPS synchronized starts were delayed by an hour after the daylight savings time
changeover.

• Bug #4925: HTGetStructureSize returning zero for FST_PROTOCOL_COUNTERS_INFO,
and FST_PROTOCOL_PARAMS

• Bug #4863/4864: NSSetPayload has been fixed for a couple of cases where it wasn't setting
the fill pattern as requested.

• Bug #4831: NSCreateFrame problem: When setting the ipattern=PAT_DECW, and using
HTFrame to load into the cards, the frame which is just created would be like FF 00 FF 00 FF
00 FF 00. This problem happens on both ML-7710 and SX-7410.

• Bug #4830: NSCreateFrame problem: When setting the ipattern=PAT_INCW, and using
HTFrame to load into the cards, the frame which is just created would be like 00 00 00 02 00
04 00 06. This problem happens on both ML-7710 and SX-7410.

• Bug #4676: ETHTransmit structure ucAlignErrors field documentation fixed to properly
indicate that the field is a count of bits instead of simply a boolean value.

• Bug #4632: ETHCounterInfo's ulRxFrameRate and ulTxFrameRate fields were transposed.

• Bug #4622: UNIX install script asks if you want to install Tcl 8.0 and implies that answering
no will install 7.6 instead. Has been clarified to remove the confusing implication.

• Bug #4212/4211: ETGetLinkStatus return value for an Ethernet link was indistinguishable
from COM3. It has been fixed so that an Ethernet link returns 32000, distinguishing it from
serial links (though not from other ethernet links)

• HTGetHubLEDs fixed to return an error code when used on a 6000-family chassis. Previously
it would behave unpredictably

• Fixed problem with linking and unlinking. If one link failed, subsequent link and unlink
attempts returned erroneous values.

• Fixed ETGetController to return the appropriate ET-1000 constant for an ET-1000.

• Fixed problem unlinking with multiple active links.

• Fixed bug with ETH_TRIGGER message function where trigger two was not being properly
set.

• Fixed byte offset problem in ETH_TRANSMIT message function with triggers and VFDs of
fewer than 6 bytes.

• Fixed problem where log output would sometimes show up as ASCII instead of binary data.

Version 3.06
• Beta release only. Version 3.06 additions and changes are included in the 3.07 description

above.

Version 3.05
New Features and Fixes

• Per-Connection Burst Count (ATM-1 and ATM-2). This feature enables applications
controlling the ATM cards to specify a quantity of frames to transmit (and then stop) for each
active connection.

Appendix C
Library Revision History

SmartLib User Guide230

• Per-Port Burst Count (ATM-1 and ATM-2). This feature is the same as above, except here we
specify it for each card or per-port basis inclusive of all active connections).

• Added support for the SMB-6000 SmartBits chassis and the LAN- 6200A SmartCard, to the
level of compatibility with the SMB-2000 SmartBits chassis and the GX-1405 SmartCard.

• New function: ETSetGPSDelay(unsigned long ulSeconds); to set the delay time before a GPS
synchronized start/stop.

• Fixed RemoveHubSlotPortFromGroup(), which only worked in certain cases. Now it should
work all the time.

• Fixed bug in HTDuplexMode to allow half-duplex settings.

• Fixed bug in one-to-many test if ATM is on one side (Bug #3920).

• Changed HTBurst “AH” for “mode” command.

• Fixed bug for throughput test. Rate never increased when ATM card was the source.

• One-to-many ATM test improved to support result retrieval when multiple streams have only
one connection.

• Fixed bug where ATM cards after first card weren’t being initialized in one-to-many or many-
to-one tests.

• Fixed bug where ATM card was being initialized several times.

• Added function ETIsSyncCapable for GPS support.

• Added one more decimal place of resolution to status results.

• Changed ucSearchType field to ulSearchType.

• Added utility functions for U64 structure

• Fixed SASA bug in ARP replies: IP destination was incorrect when both “multiple trials” and
“learning every trials” options elected.

• Report format modified to allow apps to create tabular reports.

• SASA corrected to check packet errors before calculating throughput results.

• Store and Forward latency calculation fixed for Token Ring, 100Mbit Ethernet, and 1Gbit
Ethernet.

• Extended frame relay timeout period to be 2 * NN1 * NT1 to fix a reported bug.

• Fixed problem with decoding 2 bytes of the lecid returned back from card.

• Per-Connection Burst Count (ATM-2). This feature enables applications controlling the ATM
cards to specify a quantity of frames to transmit (and then stop) for each active connection.

• Per-Port Burst Count (ATM-2) This feature is the same as above except here we specify it for
each card or per-port basis inclusive of all active connections)

• Cell Scheduling (ATM-2) This feature provides the ability to schedule N connections equally
and at a specific percentage of line rate.

• Stream Copy, Stream Modify and Stream Fill for ATM cards. This feature helps reduce the
setup time associated with configuring streams. Stream Copy creates a given number of
streams (up to the max for the card) that are identical to an already existing “source” stream.
Stream Modify modifies the parameters of a given number of streams that already exist on a

Appendix C
Library Revision History

SmartLib User Guide 231

card, with an absolute value. Stream Fill, is similar to the Stream Modify feature, except here a
delta value to increment, from the initial value, is specified.

• Frame Copy for ATM cards. This feature helps reduce the setup time with configuring frames.
Frame Copy defines frames for multiple existing streams in a single command.

• Histogram retrieval from the frame relay cards has been fixed. Index and count now work as
well for the FR_HIST_LATENCY_INFO iType.

• Modified HTSeparateHubCommands(HUB_GROUP_SYNC_ACTION) to return error if
SmartBits is not configured properly for GPS or synchronized start.

• Modified Tcl interface to allow either of the following syntaxes for declaring a single element
array: “struct_new ulVar ULong” OR “struct_new ulVar ULong*1”.

• Added SMB-200 support for ETGetController() function—returns CONTROLLER_SMB200
constant.

• HGSetGroup fixed so it can support setting a group across multiple links. (Bug #3767)

• ETLink, ETSocketLink fixed so that if it is successfully executed, the return value will be the
new link count.

• Added the capability to change gigabit latency adjustment factors from the .ini file.

• Modified ETLink to check if a comport is already linked before attempting to link again. (Bug
#3894)

• Changed FieldCount member of Layer3ModifyStreamDelta to FieldRepeat.

• Fixed problems with HGResetPort.

• Added capability to specify which histogram records to retrieve.

• Added new error codes.

• Fixed report file and log file problem for Unix (Bug #4278)

• New constant names for HTSeparateHubCommands.

• Modified ETSetTimeout to use max timeout when given 0 as the timeout parameter.

• Fixed HTLatency to not require background pattern to be set separately.

• Fixed Unix byte-ordering problems with SmartAPI.

Version 3.04
New Features and Fixes

• Added Ethernet message functions.

• Support for starts synchronized by GPS added.

• Added support for ATMClassicalIPInfo structure.

• Added support for T1/E1 Frame Relay cards.

• Fixed bug where StopOnError failed to stop test under UNIX SmartAPI for SmartApps default
error callback.

• Fixed ETGetBaud bug with multiple links.

• Fixed HGSetSpeed function.

• Added Tcl and C sample code.

Appendix C
Library Revision History

SmartLib User Guide232

• Fixed timeouts on high-latency connections.

• Added delay for UNI restart on ATM cards.

• Added option to set up Stream8023 streams for Frame Relay cards in the SmartAPI for
SmartApps.

• Increased latency resolution from 32 to 64 bits with ATM cards.

• Added support for Gigabit autonegotiation to SmartAPI for SmartApps.

• Changed SmartAPI for SmartApps to allow back-to-back test to reach 100% regardless of
resolution setting.

• Changed SmartAPI for SmartApps to report packet loss based on the transmitter rate instead
of the receiver.

• Added lUseIdenticalRate parameter to ATM setup for SmartAPI for SmartApps.

• Added uiMaxRateWithTeardown and uiMaxRateWithoutTeardown into ATMCardCapability
structure.

• Changed HTResetPort to stop ping, SNMP, and ARP reply packets from being transmitted
from Layer 3 cards.

• Fixed bug in HTGetStructure when used with ATM cards to retrieve more than 2048 bytes of
data.

• Added VFD1, 2, and 3 Block count to support 7710.

• Added support for WN-3415 and -3420 to HTGetCardModel.

• Added commands for ATM Classical IP client establish/release

• Fixed bug causing L3 and ML cards to crash if reset while running.

• Fixed bug with WriteMII to register 0.

• Added new command for per-connection burst count.

• Added support for UNI 3.0 signaling in the back to back mode for the SmartSignaling API.

• Modified the test approach for the Call Capacity test of the SmartSignaling API. The test will
now run until all connections have failed rather than quitting after the first failed connection.

• The timestamps in the Signaling API are now 64 bits long supporting time durations to
58,000+ years.

• Added HGClearGroup command to replace obscure HGSetGroup(NULL)

• Added “Frame” functions for easy static frame generation. Functions allow multiple frames to
be created, modified, and set as the fill pattern. Sensible default frame values are placed into
new frames, and the CRC is recalculated automatically as the frame contents are altered.

• Fixed installation problems under SunOS 4.1.4. The installation is now successful with the
following items installed first: GCC shared library, GNU Make 3.77, and GNU ld 2.9.1
(which comes in GNU binutils 2.9.1).

• Programming Library extension to Tcl 7.6 or 8.0 now installs successfully under SunOS 4.1.4.

• Fixed excessively long timeout for duplicate socket link.

• Fixed excessively long timeout for unlink from dead SmartBits.

• Added embedded structure definitions in Message Functions manual.

• Corrected code omissions in SmartAPI Manual.

Appendix C
Library Revision History

SmartLib User Guide 233

• Split SmartAPI manual into: SmartAPI for SmartApplications and SmartAPI for
SmartSignaling.

• Manuals converted to full-size 8.5 X 11-inch page format.

• Extensive documentation about histograms (SmartMetrics Results).

Version 3.03
New Features and Fixes

• Added Frame Relay SmartCard support to TestAPI.

• Implemented HTResetPort and HGResetPort for Gigabit SmartCards.

• Added Enable Pause Flow Control option to TestAPI for Gigabit and Fast Ethernet
SmartCards.

• Added synchronized start capability between master and slave links.

• Support for Gigabit SmartCard VFD3 buffer sizes of up to 16K.

• Fixed minor Gigabit SmartCard VFD3 bugs.

• Added interface support for Tcl 8.0 to Windows SmartLib.

• Extended maximum number of calls for ATM SmartCards from 512 to 8388607.

• Added Linear Search for the ATM Peak Call Rate test in the TestAPI.

• Added option of no call teardowns for ATM Peak Call Rate test (affecting Message Functions
and SmartAPI for SmartSignaling).

• Additional Smart API result format.

• Other miscellaneous minor bug fixes and improvements. Contact Technical Support for
complete list.

Documentation

• New manual, SmartLib Smart API, covering functionality and concepts.

• Corrected examples in SmartLib User Guide.

• Miscellaneous updates and corrections.

Version 3.02
New Features and Fixes

Added support for the following SmartCards:

• ML-7710 100Mb Multi-Layer 10/100 Mbps Ethernet SmartCard

• Reworked all gap commands to send all data in nanoseconds to be consistent with
SmartWindow

• Increased receive time-out for command downloads

• Fix of capture count retrieval

• Added Frame relay Get_Structure call to return WAN card version

• Corrected static ILMI command

• Full list available from Technical support

Appendix C
Library Revision History

SmartLib User Guide234

• Corrected report file results problem

• Corrected GbE gap size update

Documentation

• SmartLib User Guide. Major update for new functions supported in Version 3.00 and 3.02.

• SmartLib Message Functions manual. New manual. Used with the SmartLib User Guide, it
covers the newer SmartLib Hardware API functions in detail. It contains a complete list of the
SmartLib 3.02 message functions and all related parameters. It includes basic concepts of the
message function syntax, as well as examples specific to different programming languages.

Version 3.00
New Features and Fixes

Added support for the following SmartCards:

• SX-7410 100Mb Fast Ethernet

• AT-9622 622Mb OC-12c ATM

• AT-9155 155Mb OC-3 ATM Signaling and Frame Generation

• AT-9045 45Mb DS3 ATM Signaling and Frame Generation

• AT-9034 34Mb E3 ATM Signaling and Frame Generation

• AT-9020 2.048 E1 ATM Signaling and Frame Generation

• AT-9015 1.544 T1 ATM Signaling and Frame Generation

• GX-1405 Gigabit Ethernet

• WN-3405 V.35 Frame Relay

Visual Basic Interface Changes

• Added updated Visual Basic Interface files. These are in the VB directory with filenames
matching their corresponding .h header files. The 16-bit VB files have extensions .b16. The
32-bit VB files have extensions .b32. The new VB interface files contain updated commands,
structures, and constants. They also include the following changes from the previously
distributed files:

• HTVFDStructure: iPointer and iLength fields have been renamed to pData and DataCount
respectively, to more closely match the field names in et1000.h.

• The previously distributed VB interface files (etsmbapi.txt, etsmbw32.txt, and atmitem32.txt)
are still distributed in the CommLib directory, for use with previously written tests. They do
not contain updated commands, structures, and constants.

Version 2.50-20
New Features and Fixes

• Added TestAPI functions to perform the RFC1242 tests and retrieve test results. New
functions include:

� int NS1242TestStart(int iTestType

� PortPairStruct *pPortPair

Appendix C
Library Revision History

SmartLib User Guide 235

� int iTestPairs

� TestSetup *pTestSetup

� StatusCallbackFunc StatusCallBack

� ErrorCallbackFunc ErrorCallBack)

� int NS1242TestStartVB(int iTestType

� PortPairStruct *pPortPair

� int iTestPairs

� TestSetup *pTestSetup)

� int NS1242TestStop(int iTestType)

� int NS1242TestReport(int iTestType, char *pszReport)

Version 2.42
New Features and Fixes

• Added functions to set and save card speed and duplex modes.

• Added functions to get the card specific minimum and maximum interpacket gap allowed and
acceptable, and length allowed and acceptable.

Version 2.37
New Features and Fixes

• Added functions to save trigger configurations.

• Fixed bug where port 79 (hub 4, port 19) card type was being overwritten.

• Fixed Interburst Gap.

• Added HGStartSetGroup and HxModifyFillPattern.

• Fixed VB prototypes

• Automatically defer sending group configure hub group command until group start/stop/step is
required. This can result in very large speedups when using HGSetGroup and
HGAddToGroup in a loop.

• Added the STATUS_xxx items that are documented under the GetEnhancedStatus() manual.
However, entered the values as the correct values being returned from the TokenRing card.

• In HTHubSlotPorts(), added valid returns for CT_TOKENRING and CT_VG.

Version 2.32
New Features and Fixes

• Fixed behavior for Multiburst gap for 100mb cards.

• Added optimization for HGAddToGroup command where an
HGStartSetGroup()/HGEndSetGroup pair can bracket a multiple change of ports in a group to
speed up command processing time.

Appendix C
Library Revision History

SmartLib User Guide236

• Added HGModifyFillPattern and HTModifyFillPattern to allow multiple cards to be
programmed followed by a difference file for particular cards.

Version 2.31
New Features and Fixes

Added library commands for VG SmartCard:

• int HGSetVGProperty(pVGPStructure)

• int HTSetVGProperty(pVGPStructure, iHub, iSlot, iPort)

Version 2.3
New Features and Fixes

Added library commands for better group configuration control:

• int HGGetGroupCount(void)

• int HGRemoveFromGroup(int iHub, int iSlot, int iPort)

• int HGRemovePortIdFromGroup(int iPortId)

• int HGIsPortInGroup(int iPortId)

• int HGIsHubSlotPortInGroup(int iHub, int iSlot, int iPort)

Added TokenRing SmartCard commands:

• int HTPortProperty(unsigned long* pulProperties,int iHub, int iSlot, int iPort)

• int HTSetTokenRingErrors(iTRErrors, iHub, iSlot, iPort)

• int HTSetTokenRingAdvancedControl(pTRAdvancedStructure, iHub, iSlot, iPort)

• int HGSetTokenRingAdvancedControl(pTRAdvancedStructure)

• int HGSetTokenRingErrors(iTRErrors)

• int HTSetTokenRingProperty(pTRPStructure, iHub, iSlot, iPort)

• int HTSetTokenRingLLC(pTRLStructure, iHub, iSlot, iPort)

• int HTSetTokenRingMAC(pTRMStructure, iHub, iSlot, iPort)

• int HTSetTokenRingSrcRouteAddr(UseSRA, piData, iHub, iSlot, iPort)

• int HTGetEnhancedCounters(pEnCounter, iHub, iSlot, iPort)

• int HTGetEnhancedStatus(piData, iHub, iSlot, iPort)

• int HGGetEnhancedCounters(pEnCounter)

• int HGSetTokenRingProperty(pTRPStructure)

• int HGSetTokenRingLLC(pTRLStructure)

• int HGSetTokenRingMAC(pTRMStructure)

• int HGSetTokenRingSRA(UseSRA, piData)

Added link status commands. These COM port “linkage” related functions now allow multiple ET-
1000 and/or ETSMB-1000 systems to be connected and controlled from a single program using the
ETSMB Programming Library.

Appendix C
Library Revision History

SmartLib User Guide 237

• int ETSetCurrentLink(ComPort)

• int ETGetCurrentLink()

• int ETGetLinkFromIndex(iLink)

• int ETGetTotalLinks()

Version 2.22
New Features and Fixes

• Fixed Gap scale and gap range problem.

• Documented HTCollisionBackoffAggressiveness().

Version 2.21
New Features and Fixes

• int ETGetLibVersion(pszDescription, pszVersion)

• long ETGetBaud();

• int HTFindMIIAddress(pAddress,pControlBits,hub,slot,port).

• Now allow Range = 0 when HTVFD set to HVFD_NONE.

• Fixed a bug in RecallSettings() when being issued to a 100 Mbps FastCard.

Version 2.20
New Features and Fixes

• Added support for 100 Mbps Fast cards.

• Added HTReadMII and HTWriteMII functions to support the 100 Mbps Fast cards.

• Added HTDuplexMode() and HGDuplexMode().

• The Range for (ET)VFDStructure Base pattern and Increment buffer has been limited to 4096
bytes.

• The packet length may now range from 1 to 8191 bytes in the HTDataLength() command to
allow runts and jabbers. A value of zero still generates random lengths.

• Extended the HTVFDStructure.Range member to allow specifying bit sized fields for VFD1
and VFD2.

• Added library commands for the following SmartCard controls:

� int HTTransmitMode(iMode, hub, slot, port)

� int HTBurstCount(lCount, hub, slot, port)

� int HTInterBurstGap(lCount, hub, slot, port)

� int HTInterBurstGapAndScale(lCount, iScale, hub, slot, port)

� int HTMultiBurstCount(lCount, hub, slot, port)

� int HTGapAndScale(lCount, iScale, hub, slot, port)

Appendix C
Library Revision History

SmartLib User Guide238

—and the corresponding hub group commands:

� int HGTransmitMode(iMode)

� int HGBurstCount(lCount)

� int HGInterBurstGap(lCount)

� int HGInterBurstGapAndScale(lCount,iScale)

� int HGMultiBurstCount(lCount).

� int HGGapAndScale(lCount, iScale)

• The two commands, HxTransmitMode(), and HxBurstCount() replaces the single command
HxBurst(). The HxBurst() command was used to set the burst count, and then immediately set
the transmit mode. With the introduction of the HxTransmitMode() command, the user now
has explicit control over the transmit mode. Future commands should use the
HxTransmitMode(iMode), and HxBurstCount(lCount) commands and no longer utilize the
HxBurst() command.

• The introduction of the HxGapAndScale() commands affect the interpretation of the HxGap()
command. Please review the detailed description of each command for specific behaviors in
common usage.

Version 2.13
New Features and Fixes

• Added missing HGSelectTransmit prototype.

• Fixed sample ET-1000 initialization code.

Version 2.12
New Features and Fixes

• Added support for Solaris, SunOS 4.x, and Linux.

• HTGap and HGGap commands were limited to an unsigned int.

• HTLatency did not set the appropriate trigger.

• All references to Active port were changed to SmartCard.

Version 2.11
New Features and Fixes

• Visual Basic function prototypes for HTGetHubLEDs and HGGetLEDs were incorrect.

• The SETUP program would not allow installation from a non-root directory. A:\SETUP or
C:\SETUP would work, C:\TEMP\SETUP would not.

Version 2.10
New Advanced Functions

• ETEnableBackgroundProcessing that can be used to enhance the responsiveness of
applications.

Appendix C
Library Revision History

SmartLib User Guide 239

• ETIsBackgroundProcessing determines if a background process is running.

• ETReturnAddress returns a pointer to a Visual Basic data type. An example of this call is
shown in the VFD3 code snippet below.

• New Features and Fixes

• HGAddtoGroup now can be used along with HGSetGroup to create groups of ports.

• HTLatency can now be used to measure latency using specific cards.

• HTCRC and HGCRC can be used to generate CRC errors.

• HTAlign and HGAlign can be used to generate alignment errors.

• HTDribble and HGDribble can be used to generate dribble bit errors.

• HTPortType and HTHubSlotPorts can be used to determine what cards exist in a SmartBits
hub.

• HTVFD now supports a static field definition for easy programming of MAC addresses.

• HTGetLEDs and HGGetLEDs now returns LED states.

• HTGetHubLEDs now returns LED states for an entire hub.

• HTSelectTransmit now selects via Hub/Slot/Port ET-1000 transmission.

• HTSelectReceive now selects via Hub/Slot/Port ET-1000 reception and capture.

• ETEnableBackgroundProcessing that can be used to enhance the responsiveness of
applications.

• ETIsBackgroundProcessing determines if a background process is running.

• ETReturnAddress returns a pointer to a Visual Basic data type. An example of this call is
shown in the VFD3 code snippet below.

• Using ETSetup with ETRECALLSETUP and SetupId of 0 (return to factory defaults), could
leave an attached SmartBits hub in an unknown state. Now, all hubs and all cards are reset to
the default state when this command is issued. Also, the connection to the ET-1000/SmartBits
is maintained across this call. The baud rate in effect before issuing this call is restored before
the call returns. There is no need to disconnect and reconnect after this call.

• ETSetBaud now maintains a connection to the ET-1000/SmartBits. There is no longer a need
to disconnect and reconnect after using this call.

Initial connection time when using an ETLink command may be minimized by calling ETSetBaud
to the baud rate of the device prior to ETLink as below:

ETSetBaud(ETBAUD_38400); //Start searching at 38400
ETLink(ETCOM2); //Try to connect to ET1000
//This will search all baud rates, but will set the baud
//rate to 38400 for the first search. If you want to
//guarantee the fastest possible connection after
//connect, use:
ETSetBaud(ETBAUD_38400); //Start searching at 38400
ETLink(ETCOM2); //Try to connect to ET1000
ETSetBaud(ETBAUD_38400); //Reset to 38400

Appendix C
Library Revision History

SmartLib User Guide240

Modified the Visual Basic structure definition HTVFDStructure to:

Type HTVFDStructure
Configuration As Integer
Range As Integer
Offset As Integer
iPointer As Long
iLength As Integer
End Type

An example Visual Basic snippet to set a VFD3 field is as follows:

Static inData(24) As Integer
Static VFD As HTVFDStructure
inData(0) = 255 ‘Set up “VFD” data structure
inData(1) = 255 ‘to contain 2 source and dest
inData(2) = 255 ‘addresses
inData(3) = 255 ‘
inData(4) = 255 ‘ Destination:
inData(5) = 255 ‘ “FF-FF-FF-FF-FF-FF”
inData(6) = 0 ‘ Source:
inData(7) = 160 ‘ “00-A0-86-FF-00-00”
inData(8) = 134 ‘
inData(9) = 255 ‘
inData(10) = 0 ‘
inData(11) = 0
inData(12) = 0 ‘Start of 2nd packet structure
inData(13) = 160 ‘ Destination:
inData(14) = 134 ‘ “00-A0-86-FF-00-00”
inData(15) = 255 ‘
inData(16) = 0 ‘
inData(17) = 0 ‘
inData(18) = 0 ‘ Source:
inData(19) = 160 ‘ “00-A0-86-FF-00-01”
inData(20) = 134 ‘
inData(21) = 255 ‘
inData(22) = 0 ‘
inData(23) = 1 ‘
VFD.Configuration = HVFD_ENABLED
VFD.Range = 12 ‘Bytes in VFD
VFD.Offset = 0 ‘Offset in bits from first bit
VFD.iPointer = ETReturnAddress(inData(0))
‘Visual Basic does not support a
‘pointer type, so this is a
‘work-around.
VFD.iLength = 24 ‘two different destination/source

‘addresses
iRtn = HTVFD(HVFD_3, VFD, 0, 0, 0)

Appendix C
Library Revision History

SmartLib User Guide 241

Version 2.01
New Features and Fixes

• ETEnableBackgroundProcessing that can be used to enhance the responsiveness of
applications.

• ETIsBackgroundProcessing determines if a background process is running.

• ETReturnAddress returns a pointer to a Visual Basic data type. An example of this call is
shown in the VFD3 code snippet below.

• HTSelectReceivePort and HGSelectReceivePort were incompletely documented.

Version 2.0
New Features and Fixes

A new set of Hub “Group” commands have been added. All of these commands are prefixed with
an “HG” and are fully described in the Detailed Description section of this manual. The customer
should look to utilize these new “HG” commands any time that multiple SmartBits ports are being
sent the same “HT” command. Significant performance improvements can be achieved in the ET-
1000/SmartBits programming time.

There are two steps to utilizing the new “HG” commands. First, one must set up a “PortIdGroup”
string using the new HGSetGroup(char* PortIdGroup) command. Then use the “HG” commands
similar to how the HT commands are currently used. Every subsequent “HG” command will take
effect on all ports listed in the PortIdGroup string.

This has benefits in coding and significant execution time improvements when dealing with more
than a few cards at a time. For most programmers, this will enable more inline coding, thus
preventing most need to repetitively loop through all the ports to be set up using the HT
commands. At run time, the combined overhead of the code loops, operating system, serial
communication, and instrument hardware response times are cut by as much as twenty times. This
can be quite a significant performance increase if many commands are used to configure and
reconfigure your SmartCards during and between various test procedures. There is a new coding
example with this distribution that demonstrate the HG commands in C (PORTGRUP.EXE).

The library is now available as a Microsoft Windows Version 3.1 DLL. This file is called
ETSMBW16.DLL and should be copied to the \WINDOWS\SYSTEM directory.

The HTCountStructure was changed to use unsigned longs for all event counters.

Notes on Using Microsoft Visual Basic

Applications that are created in Visual Basic may call any exported DLL function. Visual Basic
calls these functions “external procedures”. These external procedures must be defined by using
the “Declare” statement in the Declarations section of a form or module. Netcom distributes a file
named “ETSMBAPI.TXT” that declares all the functions and structures referenced in this manual.
This file may be included in your Visual Basic projects.

Structures are called “User-Defined Data Types” in Visual Basic. All structures referenced in this
manual have equivalent Type definitions in ETSMBAPI.TXT.

Appendix C
Library Revision History

SmartLib User Guide242

Some of the constants used have changed names. This is because Visual Basic does not allow
functions and global constants to have the same names.

C Visual Basic

HTSTOP HTRUN_STOP

HTSTEP HTRUN_STEP

HTRUN HTRUN_RUN

ETSTOP ETRUN_STOP

ETSTEP ETRUN_STEP

ETRUN ETRUN_RUN

The DLL opens the Comm port to communicate to the ET-1000 & SmartBits Hub. The DLL
creates and uses an internal memory block throughout the set of calls used to communicate with
the device. Visual Basic does not handle this situation in a normal fashion. Normally, Visual Basic
loads and unloads a DLL for each call or procedure used. This would have the effect of removing
the memory block in-between DLL calls. So, to handle this situation, programs use the following
code fragments:

In a global module:

Declare Function LoadLibrary Lib “Kernel” (ByVal lpLibFileName As String) As
Integer
Declare Sub FreeLibrary Lib “Kernel” (ByVal hLibModule As Integer)
Global OpenedET As Integer
Global ETLibHandle As Integer

In the initial form load:

Sub Form_Load ()
ETLibHandle = LoadLibrary(“etsmbw16.dll”)
OpenedET = ETLink(ETCOM2)

End Sub

At the unload of this form, use:

Sub Form_Unload (Cancel As Integer)
If (OpenedET > 0) Then

iRtn = ETUnLink()
If (iRtn < 0) Then

MsgBox “Bad Close of ET Connection”, 48
End If

End If
FreeLibrary ETLibHandle

End Sub

This will load the DLL and keep it in memory throughout the application life.

Appendix C
Library Revision History

SmartLib User Guide 243

Visual Basic Demonstration Application

There is a demonstration program, ETVBDEMO.EXE, written in Visual Basic, that demonstrates
several different capabilities of the device. The demonstration is distributed the source code. The
source code modules used are:

Form Description

SPLASH.FRM A introductory “splash” screen shown for a short time while
initializing the ET-1000

CONNECT.FRM A background form, not shown, that controls background
processing. This background processing is retrieving the counters
for display

MAIN.FRM The main sample form

ETSETUP.FRM Set up transmission of the ET-1000 ports

SMBSET UP.FRM Set up transmission of any of the SmartCards found.

PATTERN.FRM A dummy pattern editor

GLOBALS.BAS Global variables used by the forms above.

ETSMBAPI.BAS A module created by including the ETSMBAPI.TXT file.

The following capabilities are not implemented in this demonstration program:

• VFD fields do not have any effect.

• Hex pattern editors for the Fill and VFD fields are not implemented.

• Triggering is not implemented.

• Error generation is not implemented.

• Echo mode is not implemented.

• The program does not query the device state prior to displaying any information. No checking
is done prior to transmission of packet length, gap, data contents, error generation or any
other type of packet transmission capability.

• The SmartBits Hub/Port cards when switched, do not update the state of the Run/Stop/Burst
buttons

Fixes

HTTrigger was confusing to operate. HT_TRIGGER_ON, HT_TRIGGER_OFF and
HT_TRIGGER_INDEPENDENT are now the only mode arguments required

Version 1.32
New Features and Fixes

An HTEcho command has been added to the library. This command is detailed in a new page in
the reference section of the manual. Once a card is set up to trigger on an event (e.g. data pattern
received), then that card will echo the received packet by transmitting it out the same port of that
card.

The HTVFDStructure now has a new parameter that is necessary for VFD_3. This structure has
been amended to add the integer variable member “DataCount” to the end of the structure. The
HTVFDStructure.DataCount member should be filled with the byte count (the size) of the Data
buffer your program wants VFD_3 to pull bytes from to make up packet transmissions. This is the
same buffer that is pointed to by the HTVFDStructure.Data member. The HTVFDStructure.Range
member is still the packet size.

Appendix C
Library Revision History

SmartLib User Guide244

The HTSelectReceivePort(int PortId) now allows the programmer to turn off the last selected
Receive Port by entering a PortId of 0 (zero). This is equivalent to the newly defined value in the
ET1000.H file as defined in the following table.

Defined Value Value Meaning

HTRECEIVE_OFF OFF

This allows the programmer to turn off the receive mode of the last board routed to Port B of the
ET-1000 for analysis.

Software Environment

The ET-1000 library now supports Borland C/C++ 4.02 as well as 4.0 and 3.1. To do this, the
name of the Borland 4.0 library has changed. Refer to the table below for the correct library to use
with your program. You must decide which library is compatible before attempting to link.

File Name Development For:

B4ET1000.LIB Borland C/C++ version 4.02 applications

B40ET1K.LIB Borland C/C++ version 4.0 applications

B3ET1000.LIB Borland C/C++ version 3.1 applications

MSET1000.LIB Microsoft C/C++ (Visual C/C++ version 1.5) applications

ET1000.H Library header file

Fixes

• The VFDs were not correctly generated.

• The Trigger pattern was not correctly generated.

• The Trigger_Off Mode parameter was not disabling the Trigger.

• The HTSelectReceivePort command was not functional.

• The HTSelectTMTPort command indexed SmartBits ports incorrectly. It now indexes them
like Passive Hub cards which assumes two ports per board.

Even though SmartCards have only one port, they are indexed as if there are two ports. This is
important to note if you use any of the following three library calls which take a single PortId
parameter instead of the “Hub, Slot, Port“ addressing of other commands. These three commands
are:

• HTSelectReceivePort(PortId, Mode),

• HTSelectTMTPort(PortId, Mode),

• HTSetLED(PortId, Color).

If you have all SmartCards, if PortId is equal to 1 or 2, it will address the first SmartCard in the
first Hub. Similarly, PortId equal to 3 or 4 will address the second SmartCard in the first Hub. And
so on through to PortId 159 or 160 will address SmartCard 20 in the fourth Hub. For customers
whose cards have two ports already, those are Passive cards, so your code should not be affected.

Compatibility with Previous Version

Most code previously linked with version 1.3 of this library will link with version 1.32 without
modifications other than what has been noted above. There have also been upgrades to the
Firmware that must be loaded before the HTEcho command will work. For best results you should
have firmware version 8 or above to avoid problems when trying to control an attached SmartBits.
Do NOT link your code with version 1.32 unless you have upgraded (or are about to upgrade) the
firmware on your ET-1000 to Version 8 or above.

Appendix C
Library Revision History

SmartLib User Guide 245

A field upgrade of ET-1000 firmware is available from Netcom Systems. The firmware is
upgraded using a MS-DOS executable program (provided by Netcom Systems), and it requires
about five to ten minutes to complete the upgrade process.

Version 1.3
New Features and Fixes

• Functions for controlling and monitoring a SmartBits with SmartCards installed have been
added. These additional commands allow you to exercise control over any SmartCards
installed within the SmartBits Hub Tester. Compatibility with the previous HT-40 functions is
maintained.

• Structure HTCountStructure has been added; it is used to obtain statistical information on the
SmartBits SmartCards.

• Structure HTVFDStructure has been added. HTVFDStructure is used to define VFD
information required by all SmartCards that are to implement VFD functions.

• Functions for setting and reading the Live Network Mode (LNM) of the ET-1000 have been
added. These functions are ETGetLNM() for reading the current status of LNM and
ETLNM() for setting LNM in a specific mode.

• The ET-1000 library now supports Borland C/C++ 3.1 as well as 4.0. Separate library files
have been released for each type of compiler. If you are using a Borland compiler, you must
decide which library is compatible before attempting to link.

• A function for getting the timestamp of a captured packet has been provided. Function
ETGetCaptureTime() performs this task. A new structure, “TimeStructure,” has been
provided with this release for holding the timestamp information.

Documentation

There have been several modifications to this manual due to either A) the addition of functions in
the library, or B) correction of errors in the Version 1.2 User’s Manual.

Compatibility with Previous Version

All code previously linked with version 1.2 of this library will link with version 1.3 without
modification; however, attempting to run this new version on an ET-1000 that does not have
firmware version 8 or above may produce problems when trying to control an attached HT-40.
Thus, do NOT link your code with version 1.3 unless you have upgraded (or are about to upgrade)
the firmware on your ET-1000 to Version 8 or above. Field upgrade firmware is available from
Netcom Systems. The firmware is upgraded using an MS-DOS executable program (provided by
Netcom Systems), and it requires about five to ten minutes to complete the upgrade process.

Appendix C
Library Revision History

SmartLib User Guide246

SmartLib User Guide 247

Appendix D:
Obsolete Functions and Structures

Type Function / Structure Description

Capture int ETGetCaptureTime
(TimeStructure* TStruct)

OBSOLETE Not supported

SmartBits int HGBurst
(long lVal)

OBSOLETE Sets the burst count and then sets burst mode.
Replaced by the two commands: HGBurstCount and
HGTransmitMode.

HT-40 Int HGClear
(void)

OBSOLETE Used on an HT-40 with Passive Hub cards only.
Clears all ports of a PortIdGroup attached to the ET-1000.
Passive cards only. For non-Passive SmartCards this function
has been replaced by the command: HTClearPort

SmartBits Int HGEcho
(int iMode)

OBSOLETE When Mode is ON, the select port will echo back
the received packet when a trigger condition is met. Replaced
by the command: HGTransmitMode

SmartBits Int HGSelectReceivePort
(int PortId)

OBSOLETE Selects a single receive port on the HT-40 Hub
Tester(s) which is to be routed to the ET-1000’s Port B for
analysis. Only one port can be selected at a time. This
command can be used on both SmartCards and Passive Hub
cards. Replaced by the command HGSelectReceive.

SmartBits Int HGSelectTMTPort
(int Mode)

OBSOLETE Selects the HT-40 Hub Tester(s) to transmit the
ET-1000’s Port B signals through the PortIds in the
PortIdGroup. This command an be used on both SmartCards
and Passive Hub Cards. Replaced by the command:
HGSelectTransmit.

SmartBits Int HGSetLED
(int Color)

OBSOLETE Illuminates an HT-40’s LED associated with a
PortIdGroup in the specified color

SmartBits Int HTBurst
(long lVal,
int iHub,
int iSlot,
int iPort)

OBSOLETE Sets the burst count and then sets the transmit
mode to a single burst of packets. Replaced by the two
commands: HTBurstCount and HTTransmitMode.

HT-40 Int HTClear
(int HubId)

OBSOLETE Used on an HT-40 with Passive Hub cards only.
Clears one or all HT-40 Hub Testers attached to the ET-1000.

Passive cards only. For non-Passive SmartCards this function
has been replaced by the command, HTClearPort.

SmartBits Int HTEcho
(int iMode,
int iHub,
int iSlot,
int iPort)

OBSOLETE When Mode is ON, the select port will echo back
the received packet when a trigger condition is met. Replaced
by the command: HTTransmitMode.

SmartBits Int HTGroup
(int iHub,
char* pszGroupString)

OBSOLETE Use HGSetGroup

Used to group ports on a SmartBits for purposes of coordinating
starting, stopping and stepping the transmission of Ethernet
packets from different ports. Replaced by the HGSetGroup and
related HG (group) commands.

SmartBits Int HTGroupStart
(int iHub,
char* pszGroupString)

OBSOLETE Use HGSetGroup

Simultaneously starts the transmission of packets in a group of
SmartCards within the specified hub. Replaced by HGSetGroup
command and related HG (group) commands.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide248

Type Function / Structure Description

SmartBits Int HTGroupStep
(int iHub,
char* pszGroupString)

OBSOLETE Use HGSetGroup

Simultaneously causes the transmission of a single packet in
each of a group of SmartCards within the specified hub.
Replaced by HGSetGroup and related HG (group) commands.

SmartBits Int HTGroupStop
(int iHub,
char* pszGroupString)

OBSOLETE Use HGSetGroup

Simultaneously halts the transmission of packets in a group of
SmartCards within the specified hub. Replaced by HGSetGroup
and related HG (group) commands.

SmartCard Int HTLatencyTest
(SetLatencyStructure* pSLS,
unsigned long* pulResults,
int iMode)

OBSOLETE Used to run latency tests on a group of ports of a
SmartBits. Replaced by the command: HTLatency.

SmartBits Int HTSelectReceivePort
(int PortId)

OBSOLETE Selects a single receive port on the HT-40 Hub
Tester(s) which is to be routed to the ET-1000’s Port B for
analysis. Only one port can be selected at a time. This
command can be used on both SmartCards and Passive Hub
cards. Replaced by the command: HTSelectReceive.

SmartBits Int HTSelectTMTPort
(int PortId,
int Mode)

OBSOLETE A transmit port on the HT-40 Hub Tester(s) which
is to transmit the ET-1000’s Port B signals. This command can
be used on both SmartCards and Passive Hub Cards. Replaced
by the command: HTSelectTransmit.

SmartBits Int HTSetLED
(int PortId,
int Color)

OBSOLETE Illuminates an HT-40’s LED associated with a
particular port in the specified color. This command can be used
on both SmartCards and Passive Hub Cards.

SetLatencyStructure
int Hub

Identifies the hub on which latency tests are to be run. Range: 0 to 3.

int TransmitSlot

Identifies the transmit slot within the hub that is to transmit the test pattern. This test pattern is
used on receiving slots to determine the latency.

int ReceiveSlot[20]

An array of 20 integers. A zero in a particular position of the array indicates that the
corresponding slot on the hub is NOT used for latency testing. A one in a particular position of
the array indicates that the corresponding slot on the hub IS used for latency testing.

int Offset

This is the offset, in bits, from the beginning of the packet (after the preamble bits) that the bit
pattern is located. Packets containing the bit pattern are transmitted from the slot identified in
TransmitSlot and triggered upon in the slots identified in the ReceiveSlot array.

int Range

unsigned char Pattern[12]

This is the size of the bit pattern, in bytes. This contains the bit pattern, represented as
unsigned characters across the entire array. Pattern[12] contains the most significant byte,
Pattern[0] the least significant.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide 249

ETGetCaptureTime
Current implementation always forces TIME_TAG_OFF. This command does not return valid
information.

Description Returns time stamp information from the most recently acquired captured packet

Syntax int ETGetCaptureTime(TimeStructure* Tstruct)

Parameters TStruct TimeStructure* Points to the structure to be filled with time
stamp information.

Return Value The return value is >= 0 if the function executed successfully. The return value is < 0
if the function failed. See Appendix B for error codes.

Comments The TimeTag member of the CaptureStructure structure most recently sent to the
ET-1000 (via the ETCaptureParams function) must be set to TIME_TAG_ON in
order for this function to yield any useful information. In other words, the ET-1000
must be told to save time tag ETCaptureParams function) must be set to
TIME_TAG_ON in order for this function to yield any useful information. In other
words, the ET-1000 must be told to save time tag information with each captured
packet before ETGetCaptureTime can be expected to produce any data.
Furthermore, function ETGetCapturePacket must be executed prior to executing this
function. ETGetCapturePacket actually acquires the time tag information and puts it
into an internal array – ETGetCaptureTime simply copies this information into the
provided TimeStructure structure. Thus, the time tag information provided by this
function pertains to the packet most recently acquired by ETGetCapturePacket.

HGBurst
Description Sets up a burst count for transmitting a burst of packets from all ports associated

with the PortIdGroup defined by the HGSetGroup(PortIdGroup) command.

Syntax int HGBurst(long lVal)

Parameters lVal long Specifies the burst count. Range: 0 to 16,777,215. A value
of zero turns off the burst mode, and a non-zero value
automatically enables the burst mode.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This instruction does not cause a burst of packets to be sent. Use HGRun, HGStart,
HGStep, HTGroupStart, HTGroupStep, and HTRun to actually start the
transmission of the burst.

HGClear
Description Clears one or all HT-40 Hub Testers attached to the ET-1000. This instruction

applies only to HT-40s populated with passive hub cards. For SmartBits with
SmartCards, use HTClearPort.

Syntax int HGClear()

Parameters None.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one HT-40 Hub Test device is attached to the
ET-1000. It will be ignored by the ET-1000 if there is not an HT-40 device present.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide250

HGEcho
Description Indicates whether to echo back the received packet when a Trigger condition is met

from all ports associated with the PortIdGroup defined by the previous
HGSetGroup(PortIdGroup) command.

Syntax int HGEcho(int iMode)

Parameters iMode int Indicates whether the selected Port should turn ON or OFF
it’s echo mode. The OFF mode puts the card into a continuous
mode of operation.

HTECHO_ON Sets port to Echo mode

HTECHO_OFF Sets port to Continuous mode (disabling Echo)

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

HGSelectReceivePort
Description Selects a port on an HT-40 Hub Tester(s) or SmartBits that is to be used for

receive data. The receive data from this port is routed directly back to the ET-
1000’s Port B for detailed analysis.

Syntax int HGSelectReceivePort(int PortId)

Parameters PortId int Determines the specific port on the HT-40 Hub Tester or
SmartBits from which to route data back to the ET-1000’s Port
B for detailed analysis. Each HT-40 has up to 40 passive ports,
or 20 active ports. Up to 4 HT-40s may be cascaded for a total
of 160 passive ports, or 80 active ports. PortId ranges from 1
(Port 1 of the first HT-40) to 160, or 80 (last port on the last HT-
40). The selected port will be used for analysis of received
data. If PortId is 0, the currently selected receive port will be set
off. Any values outside this range are invalid and have no effect
on the attached ET-1000 or its HT-40 counterpart.

NOTE: This command follows the same PortId numbering convention
as the HGSetGroup command. The ports are referenced
according to their actual presence in the Hub Tester. For
example, if the first board in the first Hub is not present, PortId
= 1 will refer to the next actual board in the Hub Tester system.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments Because the ET-1000 circuitry only allows one channel to be fully detailed, this
command only works on the single port listed in the PortId parameter, but is
referenced the same as all ports in the HG commands (See ”NOTE” above). This
function assumes that at least one SmartBits or HT-40 Hub Test device is attached
to the ET-1000. It will be ignored by the ET-1000 if there is not a SmartBits or HT-
40 device present.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide 251

HGSelectTMTPort
Description Enables the Port B transmission of the ET-1000 to be transmitted to all ports

associated with the PortIdGroup defined by the previous HGSetGroup(PortIdGroup)
command. Transmission mode is determined by Mode.

Syntax int HGSelectTMTPort(int Mode)

Parameters Mode int Determines the function of the Port specified in PortId:

HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and have no effect on the attached ET-1000 or its HT-
40 counterpart.

Return Value T he return value is >= 0 if the function executed successfully. A failure code, which
is less than zero, is returned if the function failed. See Appendix B for error codes.

Comments 1. This function assumes that at least one SmartBits is attached to the ET-1000. It
will be ignored by the ET-1000 if there is not a SmartBits or HT-40 device present.

2. Note that when the HTTRANSMIT_COL parameter is set in the Mode argument,
the collision type produced by the specified SmartBits or HT-40 port is determined
by the most recent parameters placed in the CollisionStructure and sent to the ET-
1000 with the ETCollision command. Specifically, only the Offset and Duration
fields of the CollisionStructure are used to determine the offset and duration of the
collisions produced by the specified HT-40 port. It doesn’t matter what the Count or
Mode fields of the CollisionStructure are set to—only the Offset and Duration are
used by the HT-40. (This is true even if the Mode field of the CollisionStructure is set
to COLLISION_OFF—Collisions are turned off for the ET-1000’s ports but not
necessarily the same is true for the HT-40’s ports.)

HGSetLED
Description Illuminates the HT-40’s LED in the specified color for all ports associated to the

PortIdGroup defined by the previous HGSetGroup(PortIdGroup).

Syntax int HGSetLED(int Color)

Parameters Color int Determines the color in which to illuminate the selected Port’s
LED:

HTLED_OFF LED is off

HTLED_RED LED is on and red

HTLED_GREEN LED is on and green

HTLED_ORANGE LED is on and orange

Any values outside this range are invalid and have no effect on
the attached ET-1000 or its HT-40 counterpart

Return Value T he return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one HT-40 is atta

ched to the ET-1000. It will be ignored by the ET-1000 if there is not an HT-40
present.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide252

HTBurst
Description Sets up a burst count for transmitting a burst of packets from a SmartCard.

Syntax int HTBurst(long lVal, int iHub, int iSlot, int iPort)

Parameters lVal long Specifies the burst count. Range: 0 to 16,777,215. A value
of zero turns off the burst mode, and a non-zero value
automatically enables the burst mode.

iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Working with Multiple Hubs in Chapter 1.

iSlot int Identifies the slot where the card is located. Range: 0 (first
slot in Hub) to 19 (last card in Hub).

iPort int Identifies the SmartCard port. (On the current SmartCards,
Port is always 0.)

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This instruction does not cause a burst of packets to be sent. The HTRun command
must be used to start the transmission of the burst.

HTClear
Description Clears one or all HT-40 Hub Testers attached to the ET-1000. This instruction applies

only to HT-40s populated with passive hub cards. For SmartBits with SmartCards,
use HTClearPort.

Syntax int HTClear(int iHubId)

Parameters iHubId int Identifies the specific Hub Tester that is to be cleared:

HTHUBID_1 Hub Tester 1

HTHUBID_2 Hub Tester 2

HTHUBID_3 Hub Tester 3

HTHUBID_4 Hub Tester 4

HTHUBID_ALL All attached Hubs

Any other value is invalid and have no effect on the attached ET-
1000 or its HT-40 counterpart.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one HT-40 Hub Test device is attached to the ET-
1000. It will be ignored by the ET-1000 if there is not an HT-40 device present.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide 253

HTEcho
Description Indicates to the selected Port whether to echo back a programmed packet when a

Trigger condition is met.

Syntax int HTEcho(int iMode, int iHub, int iSlot, int iPort)

Parameters iMode int Indicates whether the selected Port should turn ON or OFF it’s
echo mode. The OFF mode puts the card into a continuous mode
of operation.

HTECHO_ON Sets port to Echo mode

HTECHO_OFF Sets port to Continuous mode (Disabling Echo)

iHub int Identifies the hub where the card is located. The range is 0
(first hub) through N (number of hubs – 1). Remember to subtract
one since the hub identification starts at 0.

See Working with Multiple Hubs in Chapter 1.
iSlot int Identifies the slot where the card is located. Range: 0 (first

slot in Hub) to 19 (last card in Hub).
iPort int Identifies the SmartCard port. (On the current SmartCards,

Port is always 0.)

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

HTGroup
Description Reserves a group of ports within a specified hub. These ports may then be

manipulated simultaneously with one another (as a group) using the HTGroupStart(),
HTGroupStep() and HTGroupStop() instructions.

Syntax int HTGroup(int iHub, char* pszGroupString)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Working with Multiple Hubs in Chapter 1.

pszGroupString char* A NULL terminated ASCII character string of up to 255
characters which describes the ports that are to be grouped. Port
descriptions consist of numbers separated by commas and/or
blank spaces. A range of ports may be specified by inserting a
hyphen between two port numbers. For example:
0 ,, 3,5 11 - 7, 17 19 specifies ports 0, 3, 5, 7, 8, 9, 10,
11, 17 and 19. Note that though the range appears to specify a
descending order, it is still interpreted correctly. Ranges are
inclusive; thus, the endpoints (7 and 11, in this case) are part of
the group. Also, any number of commas or blank spaces may be
inserted between the port numbers, as long as the overall length
of the string doesn’t exceed 255.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments Only one group can exist at any time within a hub. Groups cannot cross hub
boundaries. i.e.; you cannot group ports in one hub with ports in another hub. This
function can only group SmartCards together. HTGroup() will not return an error
indication if you attempt to group ports that are not of the SmartBits type. Groups may
be defined and redefined at any time. Each SmartBits hub may have its own group
defined.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide254

HTGroupStart
Description Simultaneously starts the transmission of packets in a group of SmartCards within the

specified hub. The group must have been previously defined using the “Set Group”
commands.

Syntax int HTGroupStart(int iHub)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Working with Multiple Hubs in Chapter 1.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

HTGroupStep
Description Simultaneously causes the transmission of a single packet in each of a group of

SmartCards within the specified hub. The group must have been previously defined
using the “Set Group” commands.

Syntax int HTGroupStep(int iHub)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Working with Multiple Hubs in Chapter 1.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

HTGroupStop
Description Simultaneously halts the transmission of packets in a group of SmartCards within the

specified hub. The group must have been previously defined using the “Set Group”
commands.

Syntax int HTGroupStop(int iHub)

Parameters iHub int Identifies the hub where the card is located.
The range is 0 (first hub) through N (number of hubs – 1).
Remember to subtract one since the hub identification starts at 0.
See Working with Multiple Hubs in Chapter 1.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments None

Appendix D
Obsolete Functions and Structures

SmartLib User Guide 255

HTLatencyTest
Description Sets up the hub identified in LStruct for latency testing. A single slot is selected for

transmission of a packet containing a bit pattern, and several receive slots are set up
to trigger on the reception of packets containing the pattern. This function is also
used to read the results of a latency test. The results of the latency test are deposited
in array “Data,” which contains 20 elements corresponding to each of the 20 possible
slots.

Syntax int HTLatencyTest(SetLatencyStructure* LStruct, unsigned long* Data, int Mode)

Parameters LStruct SetLatencyStructure* Points to a SetLatencyStructure data
structure which contains all information necessary to set up a hub
for latency testing. This structure also contains the array in which
the results of latency test are deposited. See section 5 of this
document for a complete description of this structure.

Data unsigned long* Points to an array large enough to hold 20
unsigned long types. The results of the latency measurement are
deposited in this array—each element in the array corresponds to
a particular slot. For example, slot 0’s results are deposited into
Data[0], slot 1 into Data[1], and so on. A value of 0xFFFFFFFF
indicates an invalid reading. The results are provided in terms of
bit times. (i.e.; 100 ns increments.)

Mode int Defines the mode of operation for this command. If Mode ==
HT_RUN_LATENCY, then a latency test is run. i.e.; the
transmitting slot is instructed to transmit a packet with a particular
bit sequence, and all the requested receivers are instructed to
trigger on that same pattern. Results returned in Data may not be
valid upon return from this function. If Mode ==
HT_GET_LATENCY, then the results from a previous function
call (in which Mode == HT_RUN_LATENCY) are scooped up
from the receiving ports and returned in the Data array. When
HTLatencyTest is run in this mode, only the “Hub” element of the
HStruct needs to be defined.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments 1. The calling function must allocate sufficient room (20 unsigned longs) within the
space pointed to by Data before calling this routine.

2. When this function is run with Mode == HT_RUN_LATENCY, the results returned
in Data most likely will not be valid. In order to get valid results, this function must be
run again with Mode == HT_GET_LATENCY. It must follow the initial execution of this
function, but only after a period of time at which all trigger packets have arrived on
their receive ports. In other words, you must run this function twice: the first time, the
function sends out the packets and starts all the necessary timers; the second time,
the function gets results from all the timers. Obviously, on the second time that this
function is executed, you must be reasonably sure that the trigger packets have had
enough time to arrive at the receive ports.

3. It typically requires 3 clock periods (300 nanoseconds) for the latency pattern to
circulate out the transmit slot and directly into a receive slot. This must be subtracted
off any latency measurements made with these slots.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide256

HTSelectReceivePort
Description Selects a port on an HT-40 or SmartBits that is to be used for receive data. The

receive data from this port is routed directly back to the ET-1000’s Port B for detailed
analysis.

Syntax int HTSelectReceivePort(int PortId)

Parameters int Determines the specific port on the HT-40 Hub Tester or
SmartBits from which to route data back to the ET-1000’s Port B
for detailed analysis. Each HT-40 has up to 40 ports, and up to 4
HT-40s may be cascaded for a total of 160 ports. PortId ranges
from 1 (Port 1 of the first HT-40) to 160 (Port 40 on the last HT-
40). The selected port will be used for analysis of received data. If
PortId is 0, the currently selected receive port will be set off. Any
values outside this range are invalid and have no effect on the
attached ET-1000 or its HT-40 counterpart.

NOTE: If you have all SmartCards, then Port numbers 1 and 2 will
address your port on the card in slot 1, and Port numbers 3 and 4
will address your port on the card in slot 2, etc.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one SmartBits is attached to the ET-1000. It will
be ignored by the ET-1000 if there is not an HT-40 device present.

HTSelectTMTPort
Description Selects a transmit port on an HT-40 or Smart Bits. Transmission mode is determined

by Mode.

Syntax int HTSelectTMTPort(int PortId, int Mode

Parameters PortId int Identifies the HT-40 port to which the data length command is
to be sent.

Mode int Determines the function of the Port specified in PortId:

HTTRANSMIT_OFF Transmitter is turned off

HTTRANSMIT_STD Transmitter transmits standard packets

HTTRANSMIT_COL Transmitter transmits collision packets

All other values are invalid and have no effect on the attached
ET-1000 or its HT-40 counterpart.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments 1. This function assumes that at least one SmartBits is attached to the ET-1000. It will
be ignored by the ET-1000 if there is not an HT-40 device present.

2. Note that when the HTTRANSMIT_COL parameter is set in the Mode argument,
the collision type produced by the specified HT-40 port is determined by the most
recent parameters placed in the CollisionStructure and sent to the ET-1000 with the
ETCollision command. Specifically, only the Offset and Duration fields of the
CollisionStructure are used to determine the offset and duration of the collisions
produced by the specified HT-40 port. It doesn’t matter what the Count or Mode
fields of the CollisionStructure are set to—only the Offset and Duration are used by
the HT-40. (This is true even if the Mode field of the CollisionStructure is set to
COLLISION_OFF—Collisions are turned off for the ET-1000’s ports but not
necessarily the same is true for the HT-40’s ports.)

Appendix D
Obsolete Functions and Structures

SmartLib User Guide 257

HTSetLED
Description Illuminates an HT-40’s LED associated with a particular port in the specified color.

Syntax int HTSetLED(int PortId, int Color)

Parameters PortId int Identifies the HT-40 port to which the data length command is
to be sent..

Color int Determines the color in which to illuminate the selected Port’s
LED:

HTLED_OFF LED is turned off

HTLED_RED LED is turned ON and is red

HTLED_GREEN LED is turned ON and is green

HTLED_ORANGE LED is turned ON and is orange

Any values outside this range are invalid and have no effect on
the attached ET-1000 or its HT-40 counterpart.

Return Value The return value is >= 0 if the function executed successfully. A failure code, which is
less than zero, is returned if the function failed. See Appendix B for error codes.

Comments This function assumes that at least one HT-40 Hub Test device is attached to the ET-
1000. It will be ignored by the ET-1000 if there is not an HT-40 device present.

Appendix D
Obsolete Functions and Structures

SmartLib User Guide258

SmartLib User Guide 259

Index

Functions and structures currently supported for SmartBits systems appear in alphabetical order by function
name or structure name.

Functions and structures used only with the ET-1000 are listed under “ET-1000-only functions and
structures.”

Obsolete functions and structures are listed under “Obsolete functions and structures.”

Byte alignment switch, 9

C demo modules, 79

ATM, 79

common steps, 80

files, 81

LAN-6100A, 79

Layer 2, 79

Layer 3, 80

steps to run, 81

C/C++

SmartLib interface, 1

C/C++ development

MS Windows, 53

UNIX, 61

CaptureStructure, 202

Code examples

C demo modules, 79

Coding examples

Tcl demo scripts, 64

CollisionStructure, 120, 204

Compatibility, 2

Conventions used in this guide, 3

CountStructure, 210

Data structures

CaptureStructure, 202

Collision, 204

CollisionStructure, 120

CountStructure, 210

EnhancedCountersStructure, 125

SwitchStructure, 215

TriggerStructure, 214

VFDStructure, 222

Data structures, 109

memory allocation, 110

Data Structures

FrameSpec_Type, 189

HTCountStructure, 156

HTLatencyStructure, 164

HTTriggerStructure, 141

HTVFDStructure, 142, 186

Layer3Address, 164

TokenRingAdvancedStructure, 133, 175

TokenRingLLCStructure, 135, 178

TokenRingMACStructure, 136, 178

TokenRingPropertyStructure, 137, 179

VGCardPropertyStructure, 138

VGCardStructure, 181

Delphi development

MS Windows, 56

Directory contents

MS Windows programming, 52

UNIX programming, 60

Document revision history, 2

Documentation

online, 2

EnhancedCountersStructure, 125

Error codes, 224

ET prefix, 3, 109

ET-1000-only functions

ETAlignCount, 199

ETBNC, 200

ETBurst, 201

Index

SmartLib User Guide260

ETCaptureParams, 201

ETCaptureRun, 203

ETCollision, 203

ETDataLength, 204

ETDataPattern, 205

ETDribbleCount, 205

ETGap, 206

ETGapScale, 206

ETGetAlignCount, 207

ETGetBNC, 207

ETGetBurstCount, 207

ETGetBurstMode, 208

ETGetCapturePacket, 208

ETGetCapturePacketCount, 208

ETGetCaptureParams, 209

ETGetCollision, 209

ETGetCounters, 209

ETGetCRCError, 211

ETGetCurrentLink, 211

ETGetDataLength, 211

ETGetDataPattern, 211

ETGetDribbleCount, 212

ETGetErrorStatus, 212

ETGetGap, 212

ETGetGapScale, 212

ETGetJET210Mode, 213

ETGetLNM, 213

ETGetPreamble, 213

ETGetReceiveTrigger, 214

ETGetRun, 214

ETGetSel, 214

ETGetSwitch, 215

ETGetTransmitTrigger, 215

ETGetVFDRun, 216

ETLNM, 216

ETLoopback, 216

ETMFCounter, 217

ETPreamble, 217

ETReceiveTrigger, 218

ETRemote, 218

ETReset, 218

ETReturnAddress, 219

ETRun, 219

ETSetJET210Mode, 219

ETSetSel, 220

ETSetup, 220

ETTransmitCRC, 221

ETTransmitTrigger, 221

ETVFDParams, 221

ETVFDRun, 223

ETEnableBackgroundProcessing, 111

ETGetBaud, 111, 139

ETGetController, 111

ETGetFirmwareVersion, 112

ETGetHardwareVersion, 112

ETGetLibVersion, 112

ETGetLinkFromIndex, 113

ETGetLinkStatus, 113

ETGetSerialNumber, 113

ETGetTotalLinks, 113

ETIsBackgroundProcessing, 114

ETLink, 114

ETMake2DArray, 114

ETMake3DArray, 115

ETSetBaud, 115

ETSetCurrentLink, 116

ETSetCurrentSockLink, 116

ETSetGPSDelay, 117

ETSetTimeout, 117

ETSocketLink, 117

ETSocketLink function, 117

ETUnLink, 118

Frame templates

NSModifyFrame command, 22

using NSCreateFrame, 21

FrameSpec_Type structure, 189

Functions

ETSocketLink, 117

Index

SmartLib User Guide 261

Header files, 9

HG prefix, 3, 109

HGAddtoGroup, 118

HGAlign, 118

HGBurstCount, 119

HGBurstGap, 119

HGBurstGapAndScale, 119

HGClearGroup, 120

HGClearPort, 120

HGCollision, 120

HGCollisionBackoffAggressiveness, 121

HGCRC, 121

HGDataLength, 122

HGDribble, 122

HGDuplexMode, 122

HGFillPattern, 123

HGGap, 123

HGGapAndScale, 124

HGGetCounters, 124

HGGetEnhancedCounters, 124

HGGetGroupCount, 127

HGGetLEDs, 127

HGIsHubSlotPortInGroup, 128

HGIsPortInGroup, 128

HGMultiBurstCount, 128

HGRemoveFromGroup, 129

HGRemovePortIdFromGroup, 129

HGResetPort, 130

HGRun, 130

HGSelectTransmit, 131

HGSetGroup, 131

HGSetGroupType, 132

HGSetSpeed, 133

HGSetTokenRingAdvancedControl, 133

HGSetTokenRingErrors, 135

HGSetTokenRingLLC, 135

HGSetTokenRingMAC, 136

HGSetTokenRingProperty, 137

HGSetTokenRingSrcRouteAddr, 138

HGSetVGProperty, 138

HGStep, 139

HGStop, 139

HGSymbol, 139

HGTransmitMode, 140

HGTrigger, 141

HGVFD, 142

HT prefix, 3, 109

HTAlign, 143

HTBurstCount, 145

HTBurstGap, 145

HTBurstGapAndScale, 146

HTCardModels, 147

HTClearPort, 148

HTCollision, 148

HTCollisionBackoffAggressiveness, 149

HTCountStructure, 156

HTCRC, 149

HTDataLength, 150

HTDribble, 150

HTDuplexMode, 151

HTFillPattern, 151

HTFindMIIAddress, 152

HTFrame, 152

HTGap, 153

HTGapAndScale, 154

HTGetCardModel, 155

HTGetCounters, 156

HTGetEnhancedCounters, 157

HTGetEnhancedStatus, 157

HTGetHubLEDs, 159

HTGetHWVersion, 160

HTGetLEDs, 159

HTGetStructure, 161

HTHubId, 162

HTHubSlotPorts, 162

HTLatency, 163

HTLatencyStructure, 164

HTLayer3SetAddress, 164

Index

SmartLib User Guide262

HTMultiBurstCount, 165

HTPortProperty, 166

HTPortType, 167

HTReadMII, 168

HTResetPort, 168

HTRun, 169

HTSelectReceive, 169

HTSelectTransmit, 170

HTSendCommand, 170

HTSeparateHubCommands, 171

HTSetCommand, 172

HTSetSpeed, 173

HTSetStructure, 174

HTSetTokenRingAdvancedControl, 175

HTSetTokenRingErrors, 177

HTSetTokenRingLLC, 177

HTSetTokenRingMAC, 178

HTSetTokenRingProperty, 179

HTSetTokenRingSrcRouteAddr, 180

HTSetVGProperty, 180

HTSlotOwnership, 181

HTSlotReserve, 182

HTSymbol, 183

HTTransmitMode, 184

HTTrigger, 185

HTTriggerStructure, 141

HTVFD, 186

HTVFDStructure, 142, 186

HTWriteMII, 188

Hub numbering

multiple chassis, 17

Hub/slot/port identification, 13

Identifying hub/slot/port, 13

Installation

Tcl, 37

Windows directory, 38

IP socket connection to SmartBits, 10

Layer3Address structure, 164

Library files, 9

Library revision history, 2

LibX, 85, 88

card numbering, 88

cards supported, 85

command format, 88

component files, 85

loading, 86

procedure defaults, 94

streams, 103

summary of procedures, 107

system requirements, 85

writing output to a file, 95

Link timeouts

ETSetTimeout command, 11

keepalive routine (C), 11

keepalive routine (Tcl), 11

SmartLib response, 11

Link timeouts (serial port), 11

Linking to SmartBits, 10

Memory allocation

for data structures, 110

Message Functions, 1

MS Windows programming, 51

directory contents, 52

installation, 51

Multi-user access

defined, 20

functions, 20

NS prefix, 3, 109

NSCreateFrame, 188

NSCreateFrame command, 21

NSCreateFrameAndPayload, 190

NSDeleteFrame, 191

NSGetMaxHubs, 191

NSGetMaxPorts, 192

NSGetMaxSlots, 192

NSGetNumHubs, 192

NSGetNumPorts, 192

NSGetNumSlots, 193

Index

SmartLib User Guide 263

NSModifyFrame, 193

NSSetPayLoad, 194

NSSetPortMappingMode, 195

NSSocketLink, 195

NSUnLink, 196

Obsolete functions and structures, 249

ETGetCaptureTime, 251

HGBurst, 251

HGClear, 251

HGEcho, 252

HGSelectReceivePort, 252

HGSelectTMTPort, 253

HGSetLED, 253

HTBurst, 254

HTClear, 254

HTEcho, 255

HTGroup, 255

HTGroupStart, 256

HTGroupStep, 256

HTGroupStop, 256

HTLatencyTest, 257

HTSelectReceivePort, 258

HTSelectTMTPort, 258

HTSetLED, 259

SetLatencyStructure, 250

Original Functions, 1

Original Functions, 109

Port mapping modes

Compatible mode, 13

library functions, 19

Native mode, 16

Prefixes (of function names), 3, 109

Programming

byte alignment switch, 9

C/C++ in MS Windows, 53

C/C++ in UNIX, 61

Delphi in MS Windows, 56

general guidelines, 9

header files, 9

library files, 9

linking to SmartBits, 10

MS Windows, general notes, 53

Tcl in MS Windows, 55

Tcl in UNIX, 61

Visual Basic in MS Windows, 56

readme.html file, 2

Return values

error codes, 224

Rivision history

library, 231

Serial port

link timeouts, 11

link to SmartBits, 10

SmartAPIs, 1

SmartLib

applications, 1

code examples, 63

data structures, 109

documentation, 2

library interfaces, 1

Original Functions, 109

programming in MS Windows, 51

programming in UNIX, 59

system requirements, 9

Tcl setup, 38

test functionality, 1

SwitchStructure, 215

Synchronizing chassis or stacks, 17

Tcl

how to use with SmartLib, 37

installing

Windows directory, 38

installing, 37

setting up SmartLib, 38

SmartLib interface, 1

Tcl shell, 40

Tcl demo scripts, 64

all cards, 64

Index

SmartLib User Guide264

ATM, 65

ET-1000, 67

Ethernet, 68

Fast Ethernet (FastCard), 68

Gigabit (GIG), 69

Layer3, 70

LibX, 72

POS, 72

SmartAPI, 73

Token Ring, 73

Tcl development

MS Windows, 55

UNIX, 61

technical support

how to contact, 4

TokenRingAdvancedStructure, 133, 175

TokenRingLLCStructure, 135, 178

TokenRingMACStructure, 136, 178

TokenRingPropertyStructure, 137, 179

TriggerStructure, 214

Troubleshooting, 4

UNIX programming, 59

directory contents, 60

installation, 59

versions tested, 59

VFDStructure, 222

VGCardPropertyStructure, 138

VGCardSt9ructure, 181

Visual Basic

SmartLib interface, 1

Visual Basic development

MS Windows, 56

